Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Plant Sci ; 12(1): e11560, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369981

RESUMO

Premise: Among the slowest steps in the digitization of natural history collections is converting imaged labels into digital text. We present here a working solution to overcome this long-recognized efficiency bottleneck that leverages synergies between community science efforts and machine learning approaches. Methods: We present two new semi-automated services. The first detects and classifies typewritten, handwritten, or mixed labels from herbarium sheets. The second uses a workflow tuned for specimen labels to label text using optical character recognition (OCR). The label finder and classifier was built via humans-in-the-loop processes that utilize the community science Notes from Nature platform to develop training and validation data sets to feed into a machine learning pipeline. Results: Our results showcase a >93% success rate for finding and classifying main labels. The OCR pipeline optimizes pre-processing, multiple OCR engines, and post-processing steps, including an alignment approach borrowed from molecular systematics. This pipeline yields >4-fold reductions in errors compared to off-the-shelf open-source solutions. The OCR workflow also allows human validation using a custom Notes from Nature tool. Discussion: Our work showcases a usable set of tools for herbarium digitization including a custom-built web application that is freely accessible. Further work to better integrate these services into existing toolkits can support broad community use.

2.
Nat Plants ; 7(8): 1010-1014, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326529

RESUMO

Field photographs of plant species are crucial for research and conservation, but the lack of a centralized database makes them difficult to locate. We surveyed 25 online databases of field photographs and found that they harboured only about 53% of the approximately 125,000 vascular plant species of the Americas. These results reflect the urgent need for a centralized database that can both integrate and complete the photographic record of the world's flora.


Assuntos
Biodiversidade , Bases de Dados Factuais/estatística & dados numéricos , Geografia/estatística & dados numéricos , Fotografação/estatística & dados numéricos , Plantas , América
3.
Bioscience ; 68(2): 112-124, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29599548

RESUMO

The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.

4.
J Vis Exp ; (107): e53629, 2016 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-26863035

RESUMO

The zebrafish (Danio rerio) is a model organism of increasing importance in many fields of science. One of the most demanding technical aspects of culture of this species in the laboratory is rearing first-feeding larvae to the juvenile stage with high rates of growth and survival. The central management challenge of this developmental period revolves around delivering highly nutritious feed items to the fish on a nearly continuous basis without compromising water quality. Because larval zebrafish are well-adapted to feed on small zooplankton in the water column, live prey items such as brachionid rotifers, Artemia, and Paramecium are widely recognized as the feeds of choice, at least until the fish reach the juvenile stage and are able to efficiently feed on processed diets. This protocol describes a method whereby newly hatched zebrafish larvae are cultured together with live saltwater rotifers (Brachionus plicatilis) in the same system. This polyculture approach provides fish with an "on-demand", nutrient-rich live food source without producing chemical waste at levels that would otherwise limit performance. Importantly, because the system harnesses both the natural high productivity of the rotifers and the behavioral preferences of the fish, the labor involved with maintenance is low. The following protocol details an updated, step-by-step procedure that incorporates rotifer production (scalable to any desired level) for use in a polyculture of zebrafish larvae and rotifers that promotes maximal performance during the first 5 days of exogenous feeding.


Assuntos
Rotíferos/fisiologia , Peixe-Zebra/fisiologia , Ração Animal , Animais , Artemia , Dieta , Feminino , Larva/crescimento & desenvolvimento , Rotíferos/crescimento & desenvolvimento , Peixe-Zebra/crescimento & desenvolvimento
5.
Lab Anim (NY) ; 41(6): 158-65, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22614091

RESUMO

The zebrafish and the medaka are both important model organisms in biomedical research. Both species are frequently characterized as having a generation time of approximately 2-4 months, but the precise onset of sexual maturity and the variability of reproductive success with age have not been previously examined. The authors studied reproduction in replicate groups of wild-type zebrafish (strain AB) and medakas (strain Cab) that were maintained together in the same aquaculture system. Length, weight and survival of the fish were measured and recorded once per week. Reproductive success and viability of offspring were also evaluated. Both zebrafish and medakas began producing viable embryos within 60 d post-fertilization. These findings show that it is possible to successfully maintain populations of both species within the same research infrastructure without compromising reproductive success or embryo viability.


Assuntos
Pesqueiros/métodos , Oryzias/fisiologia , Reprodução , Peixe-Zebra/fisiologia , Animais , Cruzamento , Feminino , Abrigo para Animais , Masculino , Oryzias/crescimento & desenvolvimento , Maturidade Sexual , Peixe-Zebra/crescimento & desenvolvimento
6.
Zebrafish ; 8(3): 141-6, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21854208

RESUMO

Despite the growing popularity of the zebrafish model system, the optimal husbandry conditions for this animal are not well defined. The aim of this study was to examine the effect of stocking density on reproductive performance in zebrafish. In this study, undertaken by eight different zebrafish facilities, clutches of at least 200 wild-type zebrafish embryos from a single pairwise mating were produced at each participating institution and subsequently reared according to "in-house protocols" until they were 14 weeks old. Fish were then randomly assigned into treatment groups with balanced sex ratios and densities of 3, 6, or 12 fish/L. After a 1-month acclimation period, fish were spawned in pair crosses every 2 weeks for 3 months, for a total of six spawning dates. The number of viable and nonviable embryos produced in each clutch were counted at 1 day postfertilization. Although there was a great deal of variability in clutch size and percent spawning success among laboratories, there were no significant differences in average clutch size, spawning success, or percent viable among the treatment densities. These data suggest that using stocking densities as high as 12 fish/L does not have a negative impact on performance, when measured by reproductive performance.


Assuntos
Criação de Animais Domésticos/métodos , Animais de Laboratório/fisiologia , Reprodução/fisiologia , Peixe-Zebra/fisiologia , Animais , Tamanho da Ninhada/fisiologia , Densidade Demográfica , Distribuição Aleatória
7.
Zebrafish ; 7(3): 289-95, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20936984

RESUMO

Promoting high rates of growth and survival can be a major challenge in zebrafish culture, especially during the first-feeding stage. Here we describe a new rearing technique in which zebrafish larvae are polycultured in static tanks with Type "L" saltwater rotifers (Brachionus plicatilis) for the first 5 days of feeding (days 5-9 postfertilization). To demonstrate the effectiveness of this technique, we conducted rearing trials using fish from two different strains: AB and nacre. Growth, survival, water quality, and rotifer density were assayed daily through the polyculture phase (days 5-9), and during the transition to standard rearing conditions (days 10-12). After that point, once the fish were fully integrated onto recirculating systems, parameters were measured once per week out to day 30. In all trials, the fish displayed high rates of growth and survival throughout the three phases (polyculture, transition, and recirculating flow), indicating that this method may be employed during the critical first-feeding stage to help improve rearing performance in zebrafish facilities. Additionally, water quality parameters observed during the polyculture phase of the trials reveal that early zebrafish larvae are much more tolerant of elevated levels of ammonia and salinity than previously believed.


Assuntos
Ração Animal , Criação de Animais Domésticos/métodos , Aquicultura/métodos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Rotíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA