Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38472857

RESUMO

Almond bagasse resulting after the production of almond-based drinks represents a promising by-product with potential for use as a functional ingredient. To facilitate its utilization, the stability of this material can be achieved through dehydration processes such as hot air drying or freeze-drying. Nevertheless, owing to its high fat content, almond bagasse is prone to lipid oxidation, which could result in undesirable quality. Therefore, the objective of this work was to assess the impact of dehydration (by hot air drying at 60 and 70 °C and by freeze-drying) and storage (at room temperature and in accelerated conditions) on the functional quality and stability of almond bagasse powder. Throughout the dehydration process, it was observed that antioxidant compounds were preserved without significant differences among dehydration treatments. These compounds increased over the storage period, especially in the samples treated with hot air. Regarding antiradical capacity, the hot-air-dried samples showed higher values than the freeze-dried ones, although in all cases, it increased during storage. For total phenols in samples air-dried at 70 °C, increases of more than 50% were observed. The acidity and peroxide index were increased in the extended storage period, although they did not reach critical values. Samples stored for 180 days showed peroxide values ranging from 10 to 12.8 meq O2/kg dry matter for samples stored at room temperature and from 14.7 to 23 meq O2/kg dry matter for samples subjected to accelerated storage.

2.
Antioxidants (Basel) ; 12(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37371960

RESUMO

The presence of components of nutritional interest makes fresh almond bagasse an interesting by-product for obtaining functional ingredients. Stabilization through a dehydration process is an interesting option for its integral use, ensuring its conservation and management. Subsequently, it can be turned into powder, facilitating its use as an ingredient. The aim of this paper was to determine the effects of hot air drying at 60 and 70 °C and lyophilization on the release of phenolic components and antiradical capacity in in vitro gastrointestinal digestion and colonic fermentation, as well as on growing microbiota composition by applying high throughput sequencing. The novelty of this study lies in this holistic approach; considering both technological and physiological aspects related to gastrointestinal digestion and colonic fermentation will provide the best conditions for functional foods. The results obtained showed that lyophilization provides a powder with a total phenol content and antiradical capacity higher than hot air drying. Furthermore, in dehydrated samples, both in vitro digestion and colonic fermentation revealed a phenol content and anti-radical capacity superior to those existing in undigested products. In addition, after colonic fermentation, beneficial bacteria species have been identified. Obtaining powders from almond bagasse is presented as an interesting opportunity for the valorization of this by-product.

3.
Foods ; 13(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201036

RESUMO

The recovery of food by-products and waste is an issue of universal concern, as every year the food industry generates a huge amount of waste and by-products from a variety of sources [...].

4.
J Sci Food Agric ; 102(11): 4454-4461, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35092615

RESUMO

BACKGROUND: Fresh-cut products are ready-to-use goods which retain the fresh characteristics of raw produce. However, numerous factors restrict the quality and shelf-life of fresh-cut products. One of the most promising, convenient and safe technologies to preserve the quality and to prolong the shelf-life of fresh fruits and vegetables is the application of edible coatings. RESULTS: The aim of this study was to investigate the effects of different coatings (alginate-based, cocoa-based and a combination of them) on physicochemical, microbiological and sensory characteristics of fresh-cut oranges during storage. Preliminary rheological analyses were performed on coatings in order to characterize them. The three different coated orange samples were packaged in polyethylene terephthalate trays under atmospheric conditions and stored for 9 days at 6 °C. During storage, all samples were analysed for water activity, moisture, colour, texture, microbiological analyses and sensory quality. Orange samples coated with sodium alginate maintained the highest quality characteristics in terms of texture and microbiological properties, but not from a sensory point of view. Samples coated only with cocoa presented very high sensory attributes, but the lowest microbiological and textural quality. Samples covered in both alginate and cocoa demonstrated the best quality parameters throughout the whole storage period, including high sensory characteristics and the lowest microbiological cell loads (yeast and mesophilic aerobic bacteria under the threshold limit of 6.0 log cfu g-1 ). CONCLUSION: The bilayer coating represented the best solution in order to develop new ready to-eat-fresh oranges with both high textural and sensory attributes and prolonged shelf-life. © 2022 Society of Chemical Industry.


Assuntos
Citrus sinensis , Conservação de Alimentos , Alginatos/química , Frutas/química , Verduras
5.
Food Chem X ; 8: 100106, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33073231

RESUMO

The aim of this work was to determine the physicochemical and functional properties of a Brassica napobrassica leaves powder sieved at three particle sizes. Moreover, in order to understand the potential interactions between the Brassica napobrassica leaves powder and starch, the pasting properties were assessed and the effect of pH (4-9) and temperatures (70-90 °C) on the phenolic compounds and antiradical activities were also evaluated. Particle size had an effect on physicochemical and functional properties of the vegetable powder. Vegetable fractions affected the apparent viscosity of starch suspension along heating and cooling, with larger effect during heating. The effect of the processing conditions on the functional properties of starch suspensions was influenced by the powder particle sized and the type of starch used. Maize starch seemed to interact more with phenolic compounds than rice starch, which resulted in a protective effect against pH and temperature variations, leading to higher antiradical activities.

6.
Microorganisms ; 8(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707848

RESUMO

Survival of probiotic microorganisms in dried foods is optimal for water activity (aw) values between 0.1 and 0.3. Encapsulating and adding low-molecular weight additives can enhance probiotic viability in intermediate aw food products, but the effectiveness of sub-lethal homogenization is still not proven. This study evaluates the effect of 10% (w/w) trehalose addition and/or 100 MPa homogenization on Lactobacillus salivarius CECT 4063 counts and antioxidant properties of apple slices dried to different water activity values (freeze-drying to a aw of 0.25 and air-drying at 40 °C to a aw of 0.35 and 0.45) during four-week storage. Optical and mechanical properties of dried samples were also analyzed. Freeze-drying had the least effect on the microbial counts and air drying at 40 °C to a aw of 0.35 had the greatest effect. Antioxidant properties improved with drying, especially with convective drying. Decreases in both microbial and antioxidant content during storage were favored in samples with higher water activity values. Adding trehalose improved cell survival during storage in samples with a water activity of 0.35, but 100 MPa homogenization increased the loss of viability in all cases. Air-dried samples became more translucent and reddish, rather rubbery and less crispy than freeze-dried ones.

7.
Molecules ; 25(14)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708208

RESUMO

Interest in high homogenization pressure technology has grown over the years. It is a green technology with low energy consumption that does not generate high CO2 emissions or polluting effluents. Its main food applications derive from its effect on particle size, causing a more homogeneous distribution of fluid elements (particles, globules, droplets, aggregates, etc.) and favoring the release of intracellular components, and from its effect on the structure and configuration of chemical components such as polyphenols and macromolecules such as carbohydrates (fibers) and proteins (also microorganisms and enzymes). The challenges of the 21st century are leading the processed food industry towards the creation of food of high nutritional quality and the use of waste to obtain ingredients with specific properties. For this purpose, soft and nonthermal technologies such as high pressure homogenization have huge potential. The objective of this work is to review how the need to combine safety, functionality and sustainability in the food industry has conditioned the application of high-pressure homogenization technology in the last decade.


Assuntos
Manipulação de Alimentos/métodos , Carboidratos/química , Cor , Contaminação de Alimentos , Indústria Alimentícia , Microbiologia de Alimentos , Qualidade dos Alimentos , Temperatura Alta , Humanos , Tamanho da Partícula , Polifenóis/química , Pressão , Proteínas/química , Viscosidade
8.
Microorganisms ; 8(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365887

RESUMO

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50-89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16-47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.

9.
J Sci Food Agric ; 100(12): 4558-4564, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32418223

RESUMO

BACKGROUND: Although phenolic compounds have a role in the health benefits of fruit juice consumption, little is known about the effect of processing on their bioaccessibility. The release of phenolic compounds from the food matrix during digestion is an important pre-requisite for their effectiveness within the human body, and so it is fundamental to identify technological treatments able to preserve not only the concentration of phytochemicals, but also their bioaccessibility. In the present study, we investigated the impact of high-pressure homogenization (HPH), alone and in the presence of 100 g kg-1 trehalose or Lactobacillus salivarius, on the bioaccessibility of flavonoids in mandarin juice. In addition, digested mandarin juices were supplemented to liver cultured cells in basal and stressed conditions to evaluate their protective effect in a biological system. RESULTS: HPH reduced the concentration of total phenolics and main flavonoids but increased their bioaccessibility after in vitro digestion (P < 0.001). In the basal condition, supplementation with all digested juices significantly reduced intracellular reactive oxygen species (ROS) concentration (P < 0.001). Thiobarbituric acid reactive substances concentration in the medium was also reduced by supplementation with HPH-treated juices. Although pre-treatment with juices did not completely counteract the applied oxidative stress, it preserved cell viability, and cells pre-treated with juices submitted to HPH in the presence of probiotics showed the lowest ROS concentration. CONCLUSION: The present study represents an important step ahead in the evaluation of the impact of processing on the nutritional and functional value of food, which cannot simply be assessed based on chemical composition. © 2020 Society of Chemical Industry.


Assuntos
Citrus/química , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Antioxidantes/análise , Ácido Ascórbico/análise , Flavonoides/análise , Frutas/química , Valor Nutritivo , Compostos Fitoquímicos/análise , Polifenóis/análise
10.
Food Res Int ; 97: 250-257, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28578048

RESUMO

This study was aimed to evaluate the potential of high pressure homogenization for the microencapsulation of two probiotic lactic acid bacteria, Lactobacillus paracasei A13 and Lactobacillus salivarius subsp. salivarius CET 4063 to produce functional fermented milks. Microcapsules of the considered functional microorganisms were obtained by HPH treatments at 50MPa in the presence of sodium alginate and vegetable oil. The microencapsulated microorganisms were then inoculated as adjuncts to produce fermented milks. As controls were used fermented milks in which the two probiotic lactobacilli were inoculated without encapsulation. The viability of the strains was monitored during almost 2months of refrigerated storage. The survival of lactic acid bacteria after the gastric-duodenal simulated test was determined. Fermented milk texture parameters, the presence of exo-polysaccharides and the production of volatile molecules were also evaluated over storage. The microcapsules, for both the considered probiotic strains, were homogeneous and with a size<100µM and therefore did not adversely affect the sensory properties of the fermented milks. The encapsulation decreased the hyperacidity phenomena generally related to the inclusion of probiotic microorganisms in fermented milks. The lower acidity of the products due to the microencapsulation was fundamental for the improvement of the viability of the starter culture and the sensory characteristics of the products. The microencapsulation conditions increased the resistance to the simulated digestion processes, although the strain Lb. paracasei A13 generally showed a higher resistance to the gastric barrier respect to Lb. salivarius CECT 4063. By contrast, the data obtained showed a reduction of EPS production by the microencapsulation. The volatile profiles showed specific profiles in relation to the probiotic strain used and microencapsulation process. In conclusion, the results of this study underlined the applicative potential of HPH microencapsulation of probiotic microorganisms to produce fermented milk with improved functionality and with enhanced sensory properties.


Assuntos
Produtos Fermentados do Leite/microbiologia , Composição de Medicamentos/métodos , Manipulação de Alimentos/métodos , Lactobacillus/fisiologia , Probióticos , Armazenamento de Alimentos , Lactobacillus/química , Viabilidade Microbiana , Modelos Biológicos , Polissacarídeos Bacterianos/análise , Pressão
11.
Nutr Hosp ; 28(4): 1177-83, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23889639

RESUMO

BACKGROUND: A favorable effect over development of degenerative diseases is derived of an adecuate intake of fruit and vegetables, mainly due to their antioxidant compounds OBJECTIVES: The goal of this study was to test the effect in vivo over oxidant status and inflammation in obese children of a novel food product made of dried apples enriched with mandarin juice by vacuum impregnation. METHODS: A four-week intervention study was conducted in 41 obese children (> 2 standard deviation score-body mass index). Participants were instructed to follow their usual diet supplemented with 40 g/day of the developed product. Anthropometric parameters were determined including body mass index, waist circumference and estimations of body fat percentage using bioelectrical impedance. Dietary intake was assessed by questionnaire. Metabolic risk factors (blood pressure, lipid profile, glucose and insulin resistance) were recorded. To determine oxidant status, plasma total antioxidant capacity and 8-hydroxydeoxyguanosine, as marker of oxidative damage to DNA, were investigated. High-sensitive C-reactive protein, tumor necrosis factor-α, and interleukins 6 and 1-α were measured as inflammatory markers. Measurements were collected at baseline and at the end of the intervention period. RESULTS: Significant improvement in systolic blood pressure and lipid profile after intervention period was noted. A significant increase in the antioxidant capacity of plasma (ABTS and FRAP assays) and reductions in DNA oxidative damage and inflammatory markers were also found. CONCLUSION: Overall, adding the product to the diet contributes to ameliorate oxidant and inflammatory status in obese children and several risk factors for atherosclerosis.


Antecedentes: Una adecuada ingesta de vegetales previene el desarrollo de enfermedades degenerativas, principalmente debido a sus compuestos antioxidantes. Objetivo: Evaluamos el efecto in vivo en los niños obesos de un nuevo producto alimenticio hecho de manzanas deshidratadas enriquecidas con zumo de mandarina mediante impregnación a vacío. Métodos: Estudio prospectivo longitudinal de cuatro semanas de duración. Se estudiaron 41 niños obesos que suplementaron su dieta habitual con 40 g/día del producto desarrollado. Se determinaron parámetros antropométricos (índice de masa corporal, circunferencia de la cintura) y estimación de la de grasa corporal con impedancia bioeléctrica. La ingesta dietética se evaluó por cuestionario. Se registraron factores de riesgo metabólico (presión sanguínea, perfil lipídico, glucosa y resistencia insulínica). El estado oxidante se investigó mediante la capacidad antioxidante total del plasma y la 8-hydroxideoxiguanosina (marcador de daño oxidativo al ADN) y como marcadores de inflamación valoramos la proteína C-reactiva ultrasensible, el factor de necrosis tumoral-??y las interleukinas 6 y 1-?. Las mediciones se recogieron al inicio y al final del período de intervención. Resultados: Encontramos una mejoría significativa en la presión arterial sistólica y en el perfil lipídico después del período de intervención. Igualmente demostramos un aumento significativo de la capacidad antioxidante del plasma, una reducción del daño oxidativo del ADN y de los marcadores inflamatorios. Conclusión: La adición a la dieta del producto elaborado con manzana deshidratada, y enriquecido con zumo de mandarina mediante impregnación al vacío, contribuye a mejorar el estado oxidante e inflamatorio en los niños obesos, así como diversos factores de riesgo cardiometabólico.


Assuntos
Antioxidantes/metabolismo , Citrus sinensis/química , Citrus/química , Alimento Funcional/análise , Inflamação/dietoterapia , Inflamação/metabolismo , Malus/química , Obesidade/dietoterapia , Obesidade/metabolismo , Adolescente , Antropometria , Biomarcadores/análise , Composição Corporal/fisiologia , Criança , Dessecação , Comportamento Alimentar , Feminino , Humanos , Masculino , Estresse Oxidativo
12.
Int J Food Sci Nutr ; 64(7): 815-21, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23682866

RESUMO

The effect of a product made of dehydrated apples enriched with mandarin juice by vacuum impregnation on markers of oxidative stress (plasma antioxidant capacity, carbonyl groups (CGs), 8-hydroxydeoxyguanosine (8OHdG) and α-tocopherol) was tested in rats. Six groups of animals were studied: one group was fed a standard diet; two groups were supplemented with dehydrated apple either impregnated or not with mandarin juice throughout 28 days; and three groups (one unsupplemented and two supplemented) were additionally treated with tamoxifen (TAM) for 21 days used for induction of oxidative stress. The rats treated with TAM showed an increase in aminotransferases, CGs and 8OHdG. All of these effects were significantly decreased in the animals after apple snack consumption; the addition of mandarin juice into the apple mainly accounts for increased levels of α-tocopherol in plasma and liver. These findings suggest that the food product have a protective action against oxidative stress induced by TAM in rats.


Assuntos
Antioxidantes/farmacologia , Citrus , Frutas , Malus , Estresse Oxidativo/efeitos dos fármacos , Preparações de Plantas/farmacologia , Tamoxifeno/efeitos adversos , 8-Hidroxi-2'-Desoxiguanosina , Animais , Antioxidantes/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Dessecação , Suplementos Nutricionais , Feminino , Fígado/efeitos dos fármacos , Fígado/metabolismo , Carbonilação Proteica , Ratos , Ratos Wistar , Lanches , Transaminases/sangue , alfa-Tocoferol/sangue , alfa-Tocoferol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA