Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1273280, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533506

RESUMO

Inducing the degradation of pathological soluble antigens could be the key to greatly enhancing the efficacy of therapeutic monoclonal antibodies (mAbs), extensively used in the treatment of autoimmune and inflammatory disorders or cancer. Lysosomal targeting has gained increasing interest in recent years due to its pharmaceutical applications far beyond the treatment of lysosomal diseases, as a way to address proteins to the lysosome for eventual degradation. Mannose 6-phosphonate derivatives (M6Pn), called AMFA, are unique glycovectors that can significantly enhance the cellular internalization of the proteins conjugated to AMFA via the cation-independent mannose 6-phosphate receptor (M6PR) pathway. AMFA engineering of mAbs results in the generation of a bifunctional antibody that is designed to bind both the antigen and the M6PR. The improvement of the therapeutic potential by AMFA engineering was investigated using two antibodies directed against soluble antigens: infliximab (IFX), directed against tumor necrosis factor α (TNF-α), and bevacizumab (BVZ), directed against the vascular endothelial growth factor (VEGF). AMFA conjugations to the antibodies were performed either on the oligosaccharidic chains of the antibodies or on the lysine residues. Both conjugations were controlled and reproducible and provided a novel affinity for the M6PR without altering the affinity for the antigen. The grafting of AMFA to mAb increased their cellular uptake through an M6PR-dependent mechanism. The antigens were also 2.6 to 5.7 times more internalized by mAb-AMFA and rapidly degraded in the cells. Additional cell culture studies also proved the significantly higher efficacy of IFX-AMFA and BVZ-AMFA compared to their unconjugated counterparts in inhibiting TNF-α and VEGF activities. Finally, studies in a zebrafish embryo model of angiogenesis and in xenografted chick embryos showed that BVZ-AMFA was more effective than BVZ in reducing angiogenesis. These results demonstrate that AMFA grafting induces the degradation of soluble antigens and a significant increase in the therapeutic efficacy. Engineering with mannose 6-phosphate analogues has the potential to develop a new class of antibodies for autoimmune and inflammatory diseases.


Assuntos
Manose , Fator A de Crescimento do Endotélio Vascular , Embrião de Galinha , Animais , Fator de Necrose Tumoral alfa , Peixe-Zebra , Anticorpos Monoclonais , Bevacizumab , Infliximab , Fosfatos
2.
Org Biomol Chem ; 22(7): 1484-1494, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289387

RESUMO

The development of photodynamic therapy requires access to smart photosensitizers which combine appropriate photophysical and biological properties. Interestingly, supramolecular and dynamic covalent chemistries have recently shown their ability to produce novel architectures and responsive systems through simple self-assembly approaches. Herein, we report the straightforward formation of porphyrin-peptide conjugates and cage compounds which feature on their surface chemical groups promoting cell uptake and specific organelle targeting. We show that they self-assemble, in aqueous media, into positively-charged nanoparticles which generate singlet oxygen upon green light irradiation, while also undergoing a chemically-controlled disassembly due to the presence of reversible covalent linkages. Finally, the biological evaluation in cells revealed that they act as effective photosensitizers and promote synergistic effects in combination with Doxorubicin.


Assuntos
Nanopartículas , Fotoquimioterapia , Porfirinas , Porfirinas/farmacologia , Porfirinas/química , Fármacos Fotossensibilizantes/química , Oxigênio Singlete , Nanopartículas/química , Peptídeos/farmacologia
3.
Adv Healthc Mater ; 12(27): e2301052, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37499629

RESUMO

The concept of using two-photon excitation in the NIR for the spatiotemporal control of biological processes holds great promise. However, its use for the delivery of nucleic acids has been very scarcely described and the reported procedures are not optimal as they often involve potentially toxic materials and irradiation conditions. This work prepares a simple system made of biocompatible porous silicon nanoparticles (pSiNP) for the safe siRNA photocontrolled delivery and gene silencing in cells upon two-photon excitation. PSiNP are linked to an azobenzene moiety, which possesses a lysine group (pSiNP@ICPES-azo@Lys) to efficiently complex siRNA. Non-linear excitation of the two-photon absorber system (pSiNP) followed by intermolecular energy transfer (FRET) to trans azobenzene moiety, result in the photoisomerization of the azobenzene from trans to cis and in the destabilization of the azobenzene-siRNA complex, thus inducing the delivery of the cargo siRNA to the cytoplasm of cells. Efficient silencing in MCF-7 expressing stable firefly luciferase with siRNAluc against luciferase is observed. Furthermore, siRNA against inhibitory apoptotic protein (IAP) leads to over 70% of MCF-7 cancer cell death. The developed technique using two-photon light allows a unique high spatiotemporally controlled and safe siRNA delivery in cells in few seconds of irradiation.


Assuntos
Nanopartículas , Neoplasias , Humanos , RNA Interferente Pequeno/genética , Silício , Porosidade , Transfecção , Linhagem Celular Tumoral
4.
Int J Pharm ; 641: 123083, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37245740

RESUMO

Photodynamic therapy (PDT) and photochemical internalization (PCI) are two methods that use light to provoke cell death or disturbance of cellular membranes, respectively, via excitation of a photosensitizer and the formation of reactive oxygen species (ROS). In this context, two-photon excitation (TPE) is of high interest for PCI and/or PDT due to spatiotemporal resolution of two-photon light and deeper penetration of near-infrared light in biological tissues. Here, we report that Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) containing porphyrin groups allow the complexation of pro-apoptotic siRNA. These nano-objects were incubated with MDA-MB-231 breast cancer cells, and TPE-PDT led to significant cell death. Finally, MDA-MB-231 breast cancer cells were pre-incubated with the nanoparticles and then injected in the pericardial cavity of zebrafish embryos. After 24 h, the xenografts were irradiated with femtosecond pulsed laser and the size monitoring by imaging showed a decrease 24 h after irradiation. Pro-apoptotic siRNA was complexed with the nanoparticles and incubation with MDA-MB-231 cells did not lead to cancer cell death in dark conditions, but with two-photon irradiation, TPE-PCI was observed and a synergic effect between pro-apoptotic siRNA and TPE-PDT was noticed, leading to 90% of cancer cell death. Therefore, PMINPs represent an interesting system for nanomedicine applications.


Assuntos
Neoplasias da Mama , Nanopartículas , Fotoquimioterapia , Animais , Humanos , Feminino , Peixe-Zebra , RNA Interferente Pequeno/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Neoplasias da Mama/tratamento farmacológico , Inativação Gênica , Linhagem Celular Tumoral
5.
Pharmaceutics ; 15(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111755

RESUMO

Biopolymers have significant pharmaceutical applications, and their blending has favorable characteristics for their pharmaceutical properties compared to the sole components. In this work, sodium alginate (SA) as a marine biopolymer was blended with poly(vinyl) alcohol (PVA) to form SA/PVA scaffolds through the freeze-thawing technique. Additionally, polyphenolic compounds in Moringa oleifera leaves were extracted by different solvents, and it was found that extracts with 80% methanol had the highest antioxidant activity. Different concentrations (0.0-2.5%) of this extract were successfully immobilized in SA/PVA scaffolds during preparation. The characterization of the scaffolds was carried out via FT-IR, XRD, TG, and SEM. The pure and Moringa oleifera extract immobilized SA/PVA scaffolds (MOE/SA/PVA) showed high biocompatibility with human fibroblasts. Further, they showed excellent in vitro and in vivo wound healing capacity, with the best effect noted for the scaffold with high extract content (2.5%).

6.
Chempluschem ; 88(3): e202300021, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36779542

RESUMO

Periodic Mesoporous Ionosilica Nanoparticles (PMINPs) made via co-condensation reactions starting from an ionosilica precursor and a porphyrin derivative were used for simultaneous BODIPY/siRNA delivery in cancer cells. We observed high BODIPY loading capacities and efficiencies of the PMINPs that are triggered by anion exchange. siRNA adsorption took place on the surface of the nanoparticles, whereas BODIPY was encapsulated within the core of the nanoparticles. BODIPY release was found to be pH-dependent. Our results indicate 94 % BODIPY release after 16 h at pH 4, whereas only 2 % were released at pH 7.4. Furthermore, complexation with siRNA against luciferase gene was observed at the surface of PMINPs and gene silencing through its delivery via photochemical internalization (PCI) mechanism was efficient in MDA-MB-231 breast cancer cells expressing stable luciferase.


Assuntos
Nanopartículas , Fotoquimioterapia , RNA Interferente Pequeno/genética , Luciferases/genética
7.
Chemistry ; 29(7): e202202921, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36342312

RESUMO

The use of nucleic acids as templates, which can trigger the self-assembly of their own vectors represent an emerging, simple and versatile, approach toward the self-fabrication of tailored nucleic acids delivery vectors. However, the structure-activity relationships governing this complex templated self-assembly process that accompanies the complexation of nucleic acids remains poorly understood. Herein, the class of arginine-rich dynamic covalent polymers (DCPs) composed of different monomers varying the number and position of arginines were studied. The combinations that lead to nucleic acid complexation, in saline buffer, using different templates, from short siRNA to long DNA, are described. Finally, a successful peptidic DCP featuring six-arginine repeating unit that promote the safe and effective delivery of siRNA in live cancer cells was identified.


Assuntos
Ácidos Nucleicos , Polímeros , DNA , Relação Estrutura-Atividade , RNA Interferente Pequeno/genética
8.
Chemistry ; 29(8): e202203311, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36346344

RESUMO

The increased importance of RNA-based therapeutics comes with a need to develop next-generation stimuli-responsive systems capable of binding, transporting and releasing RNA oligomers. In this work, we describe triazolium-based amphiphiles capable of siRNA binding and enzyme-responsive release of the nucleic acid payload. In aqueous medium, the amphiphile self-assembles into nanocarriers that can disintegrate upon the addition of esterase. Key to the molecular design is a self-immolative linker that is anchored to the triazolium moiety and acts as a positively-charged polar head group. We demonstrate that addition of esterase leads to a degradation cascade of the linker, leaving the neutral triazole compound unable to form complexes and therefore releasing the negatively-charged siRNA. The reported molecular design and overall approach may have broad utility beyond this proof-of-principle study, because the underlying CuAAC "click" chemistry allows bringing together three groups very efficiently as well as cleaving off one of the three groups under the mild action of an esterase enzyme.


Assuntos
Esterases , RNA de Cadeia Dupla , RNA Interferente Pequeno
9.
Life (Basel) ; 12(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556409

RESUMO

BACKGROUND: In addition to their great optical properties, nanodiamonds (NDs) have recently proved useful for two-photon-excited photodynamic therapy (TPE-PDT) applications. Indeed, they are able to produce reactive oxygen species (ROS) directly upon two-photon excitation but not with one-photon excitation; Methods: Fluorescent NDs (FNDs) with a 100 nm diameter and detonation NDs (DNDs) of 30 nm were compared. In order to use the gems for cancer-cell theranostics, they were encapsulated in a bis(triethoxysilyl)ethylene-based (ENE) periodic mesoporous organosilica (PMO) shell, and the surface of the formed nanoparticles (NPs) was modified by the direct grafting of polyethylene glycol (PEG) and amino groups using PEG-hexyltriethoxysilane and aminoundecyltriethoxysilane during the sol-gel process. The NPs' phototoxicity and interaction with MDA-MB-231 breast cancer cells were evaluated afterwards; Results: Transmission electronic microscopy images showed the formation of core-shell NPs. Infrared spectra and zeta-potential measurements confirmed the grafting of PEG and NH2 groups. The encapsulation of the NDs allowed for the imaging of cancer cells with NDs and for the performance of TPE-PDT of MDA-MB-231 cancer cells with significant mortality. CONCLUSIONS: Multifunctional ND@PMO core-shell nanosystems were successfully prepared. The NPs demonstrated high biocompatibility and TPE-PDT efficiency in vitro in the cancer cell model. Such systems hold good potential for two-photon-excited PDT applications.

10.
J Mater Chem B ; 9(47): 9670-9683, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34726228

RESUMO

We investigated a series of Mn2+-Prussian blue (PB) nanoparticles NazMnxFe1-x[Fe(CN)6]1-y□y·nH2O of similar size, surface state and cubic morphology with various amounts of Mn2+ synthesized through a one step self-assembly reaction. We demonstrated by a combined experimental-theoretical approach that during the synthesis, Mn2+ substituted Fe3+ up to a Mn/Na-Mn-Fe ratio of 32 at% in the PB structure, while for higher amounts, the Mn2[Fe(CN)6] analogue is obtained. For comparison, the post-synthetic insertion of Mn2+ in PB nanoparticles was also investigated and completed with Monte-Carlo simulations to probe the plausible adsorption sites. The photothermal conversion efficiency (η) of selected samples was determined and showed a clear dependence on the Mn2+amount with a maximum efficiency for a Mn/Na-Mn-Fe ratio of 10 at% associated with a dependence on the nanoparticle concentration. Evaluation of the in vitro photothermal properties of these nanoparticles performed on triple negative human breast adenocarcinoma (MDA-MB-231) cells by using continuous and pulsed laser irradiation confirm their excellent PTT efficiency permitting low dose use.


Assuntos
Antineoplásicos/uso terapêutico , Ferrocianetos/uso terapêutico , Manganês/química , Nanopartículas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Ferrocianetos/química , Ferrocianetos/efeitos da radiação , Humanos , Ferro/química , Ferro/efeitos da radiação , Manganês/efeitos da radiação , Nanopartículas/química , Nanopartículas/efeitos da radiação , Processos Fotoquímicos , Terapia Fototérmica , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
11.
ACS Appl Mater Interfaces ; 13(26): 30337-30349, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34159778

RESUMO

The efficient, versatile, and straightforward synthesis of the first N-alkyl analogues of induline 3B (8a and 8b) is reported. Thanks to the introduction of lipophilic substituents and their attractive photophysical properties (far-red emission and production of singlet oxygen), phenazinium 8b can be used as a theranostic agent and shows, at very low concentrations (100 nM), a remarkable ability to (i) image cells and zebrafish embryos with high quality under both mono- (514 nm) and biphotonic (790 and 810 nm) excitations, (ii) efficiently and quickly penetrate cancer cells rather than healthy fibroblasts, and (iii) induce a total or almost total cancer cell death in vitro and in vivo after illumination (λexc = 540-560 nm). The molecular structure of 8b is based on a triamino-phenazinium core only, with no need for additional components, highlighting the emergence of a minimalistic and versatile class of fluorescent probes for targeted photodynamic cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Corantes Fluorescentes/uso terapêutico , Fenazinas/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/efeitos da radiação , Humanos , Luz , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fenazinas/síntese química , Fenazinas/metabolismo , Fenazinas/efeitos da radiação , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/efeitos da radiação , Medicina de Precisão/métodos , Oxigênio Singlete/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
12.
ACS Appl Mater Interfaces ; 13(25): 29325-29339, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34138540

RESUMO

We report periodic mesoporous ionosilica nanoparticles (PMINPs) as versatile nano-objects for imaging, photodynamic therapy (PDT), and efficient adsorption and delivery of small interfering RNA (siRNA) into breast cancer cells. In order to endow these nanoparticles with PDT and siRNA photochemical internalization (PCI) properties, a porphyrin derivative was integrated into the ionosilica framework. For this purpose, we synthesized PMINPs via hydrolysis-cocondensation procedures from oligosilylated ammonium and porphyrin precursors. The formation of these nano-objects was proved by transmission electron microscopy. The formed nanoparticles were then thoroughly characterized via solid-state NMR, nitrogen sorption, dynamic light scattering, and UV-vis and fluorescence spectroscopies. Our results indicate the formation of highly porous nanorods with a length of 108 ± 9 nm and a width of 54 ± 4 nm. A significant PDT effect of type I mechanism (95 ± 2.8% of cell death) was observed upon green light irradiation in nanoparticle-treated breast cancer cells, while the blue light irradiation caused a significant phototoxic effect in non-treated cells. Furthermore, PMINPs formed stable complexes with siRNA (up to 24 h), which were efficiently internalized into the cells after 4 h of incubation mostly with the energy-dependent endocytosis process. The PCI effect was obvious with green light irradiation and successfully led to 83 ± 1.1% silencing of the luciferase gene in luciferase-expressing breast cancer cells, while no gene silencing effect was observed with blue light irradiation. The present work highlights the high potential of porphyrin-doped PMINPs as multifunctional nanocarriers for nucleic acids, such as siRNA, with a triple ability to perform imaging, PDT, and PCI.


Assuntos
Nanopartículas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , RNA Interferente Pequeno/química , Dióxido de Silício/química , Células Cultivadas , Inativação Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
13.
Angew Chem Int Ed Engl ; 60(11): 5783-5787, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289957

RESUMO

Dynamic covalent libraries enable exploring complex chemical systems from which bioactive assemblies can adaptively emerge through template effects. In this work, we studied dynamic covalent libraries made of complementary bifunctional cationic peptides, yielding a diversity of species from macrocycles to polymers. Although polymers are typically expressed only at high concentration, we found that siRNA acts as a template in the formation of dynamic covalent polymers at low concentration in a process guided by electrostatic binding. Using a glycosylated building block, we were able to show that this templated polymerization further translates into the multivalent presentation of carbohydrate ligands, which subsequently promotes cell uptake and even cell-selective siRNA delivery.


Assuntos
Polímeros/metabolismo , RNA Interferente Pequeno/metabolismo , Carboidratos/química , Glicosilação , Células HCT116 , Humanos , Ligantes , Conformação Molecular , Polimerização , Polímeros/síntese química , Polímeros/química , RNA Interferente Pequeno/química , Eletricidade Estática
14.
Int J Pharm ; 592: 120070, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188895

RESUMO

The aim of this study was to evidence the ability of vegetable oil-based hybrid microparticles (HMP) to be an efficient and safe drug delivery system after subcutaneous administration. The HMP resulted from combination of a thermostabilized emulsification process and a sol-gel chemistry. First of all, castor oil was successfully silylated by means of (3-Isocyanatopropyl)trimethoxysilane in solvent-free and catalyst-free conditions. Estradiol, as a model drug, was dissolved in silylated castor oil (ICOm) prior to emulsification, and then an optimal sol-gel crosslinking was achieved inside the ICOm microdroplets. The resulting estradiol-loaded microparticles were around 80 µm in size and allowed to entrap 4 wt% estradiol. Their release kinetics in a PBS/octanol biphasic system exhibited a one-week release profile, and the released estradiol was fully active on HeLa ERE-luciferase ERα cells. The hybrid microparticles were cytocompatible during preliminary tests on NIH 3T3 fibroblasts (ISO 10993-5 standard) and they were fully biocompatible after subcutaneous injection on mice (ISO 10993-6 standard) underlining their high potential as a safe and long-acting subcutaneous drug delivery system.


Assuntos
Preparações Farmacêuticas , Óleos de Plantas , Animais , Óleo de Rícino , Sistemas de Liberação de Medicamentos , Camundongos , Tamanho da Partícula , Solventes
15.
Nanomaterials (Basel) ; 10(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255624

RESUMO

Small interfering RNAs (siRNAs) are promising molecules for developing new therapies based on gene silencing; however, their delivery into cells remains an issue. In this study, we took advantage of stapled peptide technology that has emerged as a valuable strategy to render natural peptides more structured, resistant to protease degradation and more bioavailable, to develop short carriers for siRNA delivery. From the pool of stapled peptides that we have designed and synthesized, we identified non-toxic vectors that were able to efficiently encapsulate siRNA, transport them into the cell and induce gene silencing. Remarkably, the most efficient stapled peptide (JMV6582), is composed of only eight amino-acids and contains only two cationic charges.

16.
J Colloid Interface Sci ; 580: 449-459, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32711196

RESUMO

Polymer vectors for gene therapy have been largely investigated as an alternative to viral vectors. In particular, double hydrophilic block copolymers (DHBCs) have shown potential in this domain, but to date studies mainly focus on non-degradable copolymers, which may be a restriction for further development. To overcome this limitation, we synthesized a DHBC (PEG43-b-PCL12(COOH)6.5) composed of a poly(ethylene glycol) (PEG) non-ionic and bioeliminable block and a degradable carboxylic acid-functionalized poly(ε-caprolactone) (PCL) block. The potential of this DHBC as an original vector for small interfering ribonucleic acids (siRNA) to formulate tripartite polyionic complex (PIC) micelles with poly(lysine) (PLL) was evaluated. We first studied the impact of the charge ratio (R) on the size and the zeta potential of the resulting micelles. With a charge ratio R = 1, one formulation with optimized physico-chemical properties showed the ability to complex 75% of siRNA. We showed a stability of the micelles at pH 7.4 and a disruption at pH 5, which allowed a pH-triggered siRNA release and proved the pH-stimuli responsive character of the tripartite micelles. In addition, the tripartite PIC micelles were shown to be non-cytotoxic below 40 µg/mL. The potential of these siRNA vectors was further evaluated in vitro: it was found that the tripartite PIC micelles allowed siRNA internalization to be 3 times higher than PLL polyplexes in murine mesenchymal stem cells, and were able to transfect human breast cancer cells. Overall, this set of data pre-validates the use of degradable DHBC as non-viral vectors for the encapsulation and the controlled release of siRNA, which may therefore constitute a sound alternative to non-degradable and/or cytotoxic polycationic vectors.


Assuntos
Micelas , Polímeros , Animais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Polietilenoglicóis , RNA Interferente Pequeno/genética
17.
J Am Chem Soc ; 142(22): 10184-10197, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32368907

RESUMO

In addition to the already described ligand L4a, two pyclen-based lanthanide chelators, L4b and L4c, bearing two specific picolinate two-photon antennas (tailor-made for each targeted metal) and one acetate arm arranged in a dissymmetrical manner, have been synthesized, to form a complete family of lanthanide luminescent bioprobes: [EuL4a], [SmL4a], [YbL4b], [TbL4c], and [DyL4c]. Additionally, the symmetrically arranged regioisomer L4a' was also synthesized as well as its [EuL4a'] complex to highlight the astonishing positive impact of the dissymmetrical N-distribution of the functional chelating arms. The investigation clearly shows the high performance of each bioprobe, which, depending on the complexed lanthanide, could be used in various applications. Each presents high brightness, quantum yields, and lifetimes. Staining of the complexes into living human breast cancer cells was observed. In addition, in vivo two-photon microscopy was performed for the first time on a living zebrafish model with [EuL4a]. No apparent toxicity was detected on the growth of the zebrafish, and images of high quality were obtained.


Assuntos
Compostos Azabicíclicos/química , Complexos de Coordenação/química , Elementos da Série dos Lantanídeos/química , Substâncias Luminescentes/química , Imagem Óptica , Fótons , Animais , Complexos de Coordenação/síntese química , Humanos , Ligantes , Substâncias Luminescentes/síntese química , Células MCF-7 , Estrutura Molecular , Peixe-Zebra/embriologia
18.
J Mater Chem B ; 8(7): 1472-1480, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31995094

RESUMO

Herein hybrid silica nanoparticles have been engineered to direct the sequential delivery of multiple chemotherapeutic drugs in response to external stimuli such as variations in pH. The nanocarriers consist of conventional MCM-41-type nanoparticles, which have been functionalised with an organic ligand (or stalk) grafted onto the external surface. The stalk is designed to "recognise" a complementary molecule, which serves as a "cap" to block the pores of the nanoparticles. First, camptothecin is introduced into the pores by diffusion prior to capping the pore apertures via molecular recognition. The cap, which is a derivative of 5-fluorouracil, serves as a second cytotoxic drug for synergistic chemotherapy. In vitro tests revealed that negligible release of the drugs occurred at pH 7.4, thus avoiding toxic side effects in the blood stream. In contrast, the stalk/cap complex is destabilised within the endolysosomal compartment (pH 5.5) of cancer cells, where release of the drugs was demonstrated. Furthermore, this environmentally responsive system exhibited a synergistic effect of the two drugs, where the pH-triggered release of the cytotoxic cap followed by diffusion-controlled release of the drug cargo within the pores led to essentially complete elimination of breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos , Fluoruracila/farmacologia , Nanopartículas/química , Dióxido de Silício/química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/química , Humanos , Células MCF-7 , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas
19.
Cancers (Basel) ; 11(12)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817924

RESUMO

While first discovered in immunoreceptor signaling, the Syk protein kinase behaves as a tumor and metastasis suppressor in epithelial cells. Its reduced expression in breast and other carcinomas is correlated with decreased survival and increased metastasis risk, but its action mechanism remains largely unknown. Using phosphoproteomics we found that Syk phosphorylated E-cadherin and α-, ß-, and p120-catenins on multiple tyrosine residues that concentrate at intercellular junctions. Increased Syk expression and activation enhanced E-cadherin/catenin phosphorylation, promoting their association and complex stability. In human breast cancer cells, Syk stimulated intercellular aggregation, E-cadherin recruitment and retention at adherens junctions, and promoted epithelial integrity, whereas it inhibited cell migration and invasion. Opposite effects were obtained with Syk knockdown or non-phosphorylatable mutant E-cadherin expression. Mechanistically, Syk stimulated the interaction of the E-cadherin/catenin complex with zonula occludens proteins and the actin cytoskeleton. Conditional Syk knockout in the lactating mouse mammary gland perturbed alveologenesis and disrupted E-cadherin localization at adherens junctions, corroborating the observations in cells. Hence, Syk is involved in the maintenance of the epithelial integrity of the mammary gland via the phosphorylation and stabilization of the E-cadherin/catenin adherens junction complex, thereby inhibiting cell migration and malignant tumor invasion.

20.
Int J Pharm ; 569: 118585, 2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31376467

RESUMO

In this work, we implemented a supramolecular approach in order to combine photodynamic therapy (PDT) with gene therapy. We made use of a simple cationic guanidylated porphyrin (H2­PG) with the hypothesis that porphyrin aggregates should be capable of complexing siRNA through multivalent interactions and thus contribute to its intracellular delivery, while remaining active photosensitizers for PDT. The PDT effect of H2­PG was shown by incubating human breast cancer cells (MDA-MB-231) with H2­PG followed by light-irradiation at 405 nm. On the other hand, while siRNA do not enter cells alone, we showed, by fluorescence confocal microscopy and flow cytometry, that H2­PG promotes the internalization of Atto-488 siRNA. Finally, studying the combined PDT and delivery of siRNA directed against inhibitory apoptotic protein (IAP) family, we found an additive effect of the two therapies, thereby demonstrating that H2­PG is capable of acting both as a photosensitizer and supramolecular siRNA vector.


Assuntos
Inativação Gênica , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Linhagem Celular Tumoral , Terapia Genética , Humanos , Proteínas Inibidoras de Apoptose/genética , Fármacos Fotossensibilizantes/química , Porfirinas/química , RNA Interferente Pequeno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA