Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 289: 122237, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535224

RESUMO

Absolute cross-section values are reported from high-resolution vacuum ultraviolet (VUV) photoabsorption measurements of gas-phase formic acid (HCOOH) in the photon energy range 4.7-10.8 eV (265-115 nm), together with quantum chemical calculations to provide vertical energies and oscillator strengths. The combination of experimental and theoretical methods has allowed a comprehensive assignment of the electronic transitions. The VUV spectrum reveals various vibronic features not previously reported in the literature, notably associated with (3pa'←10a'), (3p'a'←10a'), (3sa'←2a″) and (3pa'←2a″) Rydberg transitions. The assignment of vibrational features in the absorption bands reveal that the C=O stretching, v3'a', the H'-O-C' deformation, v5'a', the C-O stretching, v6'a', and the O=C-O' deformation, v7'a' modes are mainly active. The measured absolute photoabsorption cross sections have also been used to estimate the photolysis lifetime of HCOOH in the upper stratosphere (30-50 km), showing that solar photolysis is an important sink at altitudes above 30 km but not in the troposphere. Potential energy curves for the lowest-lying electronic excited states, as a function of the C=O coordinate, are obtained employing time dependent density functional theory (TD-DFT). These calculations have shown the relevance of internal conversion from Rydberg to valence character governing the nuclear dynamics, yielding clear evidence of the rather complex multidimensional nature of the potential energy surfaces involved.

2.
J Chem Phys ; 153(24): 244303, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33380099

RESUMO

This paper presents a joint experimental and theoretical study of positron scattering from furan. Experimental data were measured using the low energy positron beamline located at the Australian National University and cover an energy range from 1 eV to 30 eV. Cross sections were measured for total scattering, total elastic and inelastic scattering, positronium formation, and differential elastic scattering. Two theoretical approaches are presented: the Schwinger multichannel method and the independent atom method with screening corrected additivity rule. In addition, our data are compared to corresponding electron scattering results from the same target with a number of significant differences observed and discussed.

3.
Phys Chem Chem Phys ; 22(41): 23837-23846, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33073277

RESUMO

We present novel experimental results of negative ion formation of halothane (C2HBrClF3) upon electron transfer from hyperthermal neutral potassium atoms (K°) in the collision energy range of 8-1000 eV. The experiments were performed in a crossed molecular beam setup allowing a comprehensive analysis of the time-of-flight (TOF) mass negative ions fragmentation pattern and a detailed knowledge of the collision dynamics in the energy range investigated. Such TOF mass spectra data show that the only negative ions formed are Br-, Cl- and F-, with a strong energy dependence in the low-energy collision region, with the bromine anion being the most abundant and sole fragment at the lowest collision energy probed. In addition, potassium cation (K+) energy loss spectra in the forward scattering direction were obtained in a hemispherical energy analyser at different K° impact energies. In order to support our experimental findings, ab initio quantum chemical calculations have been performed to help interpret the role of the electronic structure of halothane. Potential energy curves were obtained along the C-X (X = Br, Cl) coordinate to lend support to the dissociation processes yielding anion formation.

4.
J Phys Chem A ; 124(42): 8660-8667, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33050696

RESUMO

Trifluoroiodomethane (CF3I) is one of the most appealing candidates for applications in plasma-based technologies in view of its many interesting advantages when compared to more standard gases such as trifluorobromomethane (CF3Br). Low-energy electrons are prone to decomposing these molecules into reactive species, and knowledge on the collision cross sections is fundamental for modeling transport and reactivity in plasma environments. Despite many studies on electron collisions with the abovementioned molecules, there are conflicting results on the assignment of shape resonances and on the magnitudes of total cross sections. Here, we try to clarify these aspects by performing ab initio electron scattering calculations. We found integral cross sections in fair agreement with the most recent measurements, in contrast to previous reports. For each molecule, we found a σCX* resonance (antibonding between the carbon and the heavy halogen) at 1 eV in CF3Br and at ∼0 eV in CF3I. Furthermore, there are three shape resonances of σCF* character; two are degenerate and account for a broad feature around 6 eV and the other one appears around 9.5 eV. We also discuss the possible role of the degenerate resonance in dissociative electron attachment reactions, as well as the impact of the heavy halogen on the cross sections and on the shape resonances.

5.
J Chem Phys ; 151(8): 084310, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31470731

RESUMO

Measurements of the total electron scattering cross sections (TCSs) from benzene, in the impact energy range of 1-1000 eV, are presented here by combining two different experimental systems. The first utilizes a magnetically confined electron transmission beam for the lower energies (1-300 eV), while the second utilizes a linear transmission beam apparatus for the higher energies (100-1000 eV). These cross sections have also been calculated by means of two different theoretical methods, the Schwinger Multichannel with Pseudo Potential (SMCPP) procedure, employing two different approaches to account for the polarization of the target for impact energies between 0.1 and 15 eV, and the Independent Atom Model with the Screening Corrected Additivity Rule including Interference effect (IAM-SCAR+I) paradigm to cover the 10-10 000 eV impact energy range. The present results are compared with available theoretical and experimental data, with the level of accord being good in some cases and less satisfactory in others, and some predicted resonances have been identified. In particular, we found a π* shape resonance at 1.4 eV and another feature in the energy region 4.6-4.9 eV interpreted as a π* resonance (2B2g symmetry), which is a mixture of shape and a core excited resonance, as well as a Feshbach resonance at 5.87 eV associated with the 3s (a1g) Rydberg state. A Born-type formula to extrapolate TCS values for energies above 10 000 eV is also given. This study provides a complete set of TCS data, with uncertainty limits within 10%, ready to be used for modeling electron transport applications.

6.
J Chem Phys ; 149(17): 174308, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30408986

RESUMO

We report the results of ab initio calculations for elastic scattering and also for excitation of individual electronic states of para-benzoquinone (pBQ) by the impact of low-energy electrons. The calculations for elastic scattering were performed with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) in the static-exchange (SE) plus polarization (SEP) approximation for energies up to 50 eV. The assignments for the resonance spectrum obtained in this study are, in general, in good agreement with previous results available in the literature. For electronic excitation by electron impact, the SMCPP method with N energetically open electronic states (N open ), at either the static-exchange (N open ch-SE) or the static-exchange-plus-polarisation (N open ch-SEP) approximation, was employed to calculate the scattering amplitudes using a channel coupling scheme that ranges from the 1ch-SEP up to the 89ch-SE level of approximation, depending on the energy of interest. Integral cross sections (ICSs) and differential cross sections (DCSs) were obtained for incident electron energies lying between 15 eV and 50 eV. The study focuses on the influence of multichannel coupling effects for electronically inelastic processes, more specifically, on how the number of excited states included in the open-channel space impacts upon the convergence of the cross sections at intermediate and higher energies. In particular, we found that the magnitude of DCS and ICS results for electronic excitation decreases as more channels are included in the calculations. To the best of our knowledge, there are no other experimental or theoretical ICS or DCS results for excitation into individual electronic states of pBQ available in the literature between 15 and 50 eV against which we might compare the present calculations.

7.
J Phys Chem A ; 122(41): 8191-8197, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30231614

RESUMO

We report a combined experimental and theoretical study of the electronic state spectroscopy of acrylic acid (C3H4O2) in the gas phase, by high-resolution vacuum ultraviolet (VUV) photoabsorption measurements in the 4.0-10.8 eV energy range, together with ab initio calculations (vertical energies and oscillator strengths), which were used in the assignment of the valence transitions. We also discuss the Rydberg transitions for this molecular target, obtained using the experimental ionization energies available in the literature. The experimental spectrum presented in this paper represents the highest resolution data yet reported for acrylic acid and reveals new features not previously reported in the literature. The dominant transitions have been assigned to (π*(4a″) ← π(3a″)) and (π*(4a″) ← π(2a″)), the latter exhibiting excitation of the ν5'( a') C = O stretching mode with mean energy of 0.155 eV. The measured absolute photoabsorption cross sections have been used to calculate the photolysis lifetime of acrylic acid in the upper stratosphere (20-50 km).

8.
Phys Chem Chem Phys ; 20(34): 22368-22378, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30129642

RESUMO

Total electron scattering cross sections, from para-benzoquinone, for impact energies ranging between 1 to 200 eV, have been obtained by measuring the attenuation of a linear electron beam under magnetic confinement conditions. Random uncertainty limits on these values have been found to be within 5%. Systematic errors, due to the axial magnetic beam conditions in combination with the acceptance angle of the detector, have been evaluated by integrating our calculated independent atom model with the screening corrected additivity rule and interference term elastic differential cross sections over that detection acceptance angle. Our previous calculations and measurements on this molecule (Jones et al., J. Chem. Phys., 2018, 148, 124312 and J. Chem. Phys., 2018, 148, 204305), have been compiled and complemented with new elastic and inelastic scattering cross section calculations in order to obtain a comprehensive cross section data base, within the considered energy range, for modelling purposes. The self-consistency of the present data set has been evaluated by simulating the electron transport of 15 eV electrons in para-benzoquinone, and comparing those results with the observed transmitted intensity distribution.

9.
J Chem Phys ; 148(20): 204305, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29865824

RESUMO

We report absolute experimental integral cross sections (ICSs) for the electron impact excitation of 6 bands (Bands 0-V) of unresolved electronic-states in para-benzoquinone, for incident electron energies between 20 and 40 eV. Absolute vibrational-excitation ICSs, for 3 composite vibrational bands (Bands I-III), are also reported in that same energy range. In addition, ICSs calculated within our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section (TCS) for electron-para-benzoquinone scattering. Where possible, those calculated IAM-SCAR+I ICSs are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, we also present results from our Schwinger multichannel method with pseudopotential (SMCPP) calculations. Here elastic ICSs and ICSs corresponding to the Bands 0-III of unresolved electronic-states are presented, with agreement between the SMCPP electronic-state ICSs and those from our measurements being in good qualitative accord. The energy range of our SMCPP computations is 16-50 eV. Using the binary-encounter-Bethe (BEB) approach, total ionization cross sections for this collision system were computed. Those total ionization cross sections were then added to our SMCPP ICS results, to derive SMCPP/BEB TCSs that are typically in very good accord with those from our IAM-SCAR+I approach.

10.
J Chem Phys ; 148(12): 124312, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29604872

RESUMO

Angle resolved electron energy loss spectra (EELS) for para-benzoquinone (C6H4O2) have been recorded for incident electron energies of 20, 30, and 40 eV. Measured differential cross sections (DCSs) for electronic band features, composed of a combination of energetically unresolved electronic states, are subsequently derived from those EELS. Where possible, the obtained DCSs are compared with those calculated using the Schwinger multichannel method with pseudopotentials. These calculations were performed using a minimum orbital basis single configuration interaction framework at the static exchange plus polarisation level. Here, quite reasonable agreement between the experimental cross sections and the theoretical cross sections for the summation of unresolved states was observed.

11.
J Chem Phys ; 148(7): 074304, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29471649

RESUMO

We present a comparative study on the calculated cross sections obtained for the elastic collisions of low-energy electrons with the amino acid proline (C5H9NO2) and its building block pyrrolidine (C4H9N). We employed the Schwinger multichannel method implemented with pseudopotentials to compute integral, differential, and momentum transfer cross sections in the static-exchange plus polarization approximation, for energies up to 15 eV. We report three shape resonances for proline at around 1.7 eV, 6.8 eV, and 10 eV and two shape resonances for pyrrolidine centered at 7 eV and 10.2 eV. The present resonance energies are compared with available experimental data on vertical attachment energies and dissociative electron attachment, where a good agreement is found. From the comparison of the present results with available calculated cross sections for the simplest carboxylic acid, formic acid (HCOOH), and from electronic structure calculations, we found that the first resonance of proline, at 1.7 eV, is due the presence of the carboxylic group, whereas the other two structures, at 6.8 eV and 10 eV, clearly arise from the pyrrolidine ring. A comparison between the differential cross sections for proline and pyrrolidine at some selected energies of the incident electron is also reported in this paper.

12.
J Chem Phys ; 147(24): 244304, 2017 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-29289127

RESUMO

We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ∼80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To the best of our knowledge, there are no other experimental or theoretical vibrational excitation results against which we might compare the present measurements.

13.
J Phys Chem A ; 120(45): 8998-9007, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27766869

RESUMO

Here we report novel comprehensive investigations on the electronic state spectroscopies of isolated 2,4- and 2,6-difluorotoluene in the gas phase by high-resolution vacuum ultraviolet (VUV) photoabsorption measurements in the 4.4-10.8 eV energy range, with absolute cross-section values derived. We also present the first set of ab initio calculations (vertical energies and oscillator strengths), which we have used in the assignment of valence transitions of the difluorotoluene molecules, together with calculated ionization energies to obtain the Rydberg transitions for both molecules. The measured absolute photoabsorption cross sections have been used to estimate the photolysis lifetimes of 2,4- and 2,6-difluorotoluene in the Earth's atmosphere.

14.
J Chem Phys ; 144(16): 164302, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27131545

RESUMO

We report differential and integral elastic cross sections for low-energy electron collisions with CF3Cl, CF2Cl2, and CFCl3 molecules for energies ranging from 0.1 eV to 30 eV. The calculations were performed using the Schwinger multichannel method with pseudopotentials in the static-exchange and static-exchange plus polarization approximations. The influence of the permanent electric dipole moment on the cross sections was included using the Born closure scheme. A very good agreement between our calculations and the experimental results of Jones [J. Chem. Phys. 84, 813 (1986)], Mann and Linder [J. Phys. B 25, 1621 (1992); 25, 1633 (1992)] and Hoshino et al. [J. Chem. Phys. 138, 214305 (2013)] was found. We also compare our results with the calculations of Beyer et al. [Chem. Phys. 255, 1 (2000)] using the R-matrix method, where we find good agreement with respect to the location of the resonances, and with the calculations of Hoshino et al. using the independent atom method with screening corrected additivity rule, where we find qualitative agreement at energies above 20 eV. Additional electronic structure calculations were carried out in order to help in the interpretation of the scattering results. The stabilization the lowest σ(∗) resonance due to the exchange of fluorine by chlorine atoms (halogenation effect) follows a simple linear relation with the energy of the lowest unoccupied molecular orbitals and can be considered as a signature of the halogenation effect.

15.
J Chem Phys ; 144(12): 124309, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27036450

RESUMO

We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.

16.
J Chem Phys ; 144(14): 144303, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27083717

RESUMO

We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.

17.
J Chem Phys ; 143(22): 224304, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26671372

RESUMO

We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.

18.
J Chem Phys ; 143(14): 144308, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26472380

RESUMO

The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.


Assuntos
Furaldeído/química , Teoria Quântica , Espectroscopia de Perda de Energia de Elétrons , Elétrons , Espectrofotometria Ultravioleta
19.
J Chem Phys ; 142(19): 194302, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-26001456

RESUMO

We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C6H5OH). The measurements were carried out at incident electron energies in the range 15-40 eV and for scattered-electron angles in the range 10-90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C6H5OH molecule by electron impact.

20.
J Chem Phys ; 142(10): 104305, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25770538

RESUMO

We report results from a joint theoretical and experimental investigation into electron scattering from the important organic species phenol (C6H5OH). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C6H5OH. The measurements were carried out at energies in the range 15-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ∼80 meV. Corresponding Schwinger multichannel method with pseudo-potentials calculations, with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were conducted at the static exchange plus polarisation (SEP)-level using a minimum orbital basis for single configuration interaction (MOBSCI) approach. Agreement between the measured and calculated DCSs was typically fair, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOBSCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA