Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959068

RESUMO

The microbial ecology fundamentals of raw milk and long-ripened cheeses consist of a complex interaction between starter lactic acid bacteria (SLAB) and non-starter LAB (NSLAB). Although NSLAB aromatic properties are paramount, other phenotypic traits need to be considered for their use as adjunct cultures, such as the capability to endure technological parameters encountered during cheesemaking. The present study focused on the isolation and characterization of NSLAB from spontaneously fermented raw cow's milk coming from 20 dairies that produce Grana Padano PDO cheese. From 122 isolates, the screening process selected the 10 most diverse strains belonging to Lacticaseibacillus spp. to be phenotypically characterized. The strains were tested for their growth performance in milk in combination with the application of technological stresses, for their ability to produce volatile compounds after their growth in milk, and for their ability to use different nutrient sources and resist chemicals. The complex characterization qualified the strains 5959_Lbparacasei and 5296_Lbparacasei as the best candidates to be used as adjunct strains in the production of raw milk and long-ripened cheeses, provided that antibiotic resistance is measured before their employment. Other strains with interesting aromatic capabilities but lower heat resistance were 5293_Lbparacasei, 5649_Lbparacasei and 5780_Lbparacasei, which could be candidates as adjunct strains for uncooked cheese production.

2.
Food Res Int ; 172: 113102, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689872

RESUMO

The microbial population of raw milk plays a crucial role in the development of distinctive traits of raw-milk cheeses particularly appreciated by consumers. It was previously demonstrated that the microbial population of raw milk is modified by a high-speed centrifugation (also called bactofugation) conducted at 39 °C. The aim of the present study was to evaluate the effects of this process, performed once or twice, on the microbial, compositional, biochemical, and sensory characteristics of the derived hard cheeses. Experimental and control cheesemaking were conducted in parallel at a cheese factory during a 13-month period. Cheeses were analysed after 9, 15 and 20 months of ripening for microbial count, composition, proteolysis extent, volatile compounds, and sensory profile. Results evidenced that experimental cheeses were characterized by lower numbers of viable lactobacilli respect to control. Experimental cheeses also showed differences in the progress of primary and secondary proteolysis which, in turn, caused different patterns of free amino acids at all ripening times. Experimental cheeses had significantly lower content of esters and were differentiated from control for some traits by assessors. In conclusion, use of high-speed centrifugation of milk shall be discouraged if characteristic traits of raw-milk cheeses, particularly PDO cheeses, want to be retained.


Assuntos
Queijo , Microbiota , Animais , Leite , Aminoácidos , Centrifugação
3.
Foods ; 12(17)2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37685233

RESUMO

The present study investigated some physico-chemical and microbiological traits of 20-month ripened hard cheeses produced from low-temperature high-speed centrifuged raw milk that developed a structural defect consisting of eyes or slits in the paste. Cheeses obtained using the same process and that did not develop the defect were used as controls. The colour, texture, moisture, water activity, proton molecular mobility, microstructure, extent of proteolysis, and viable microorganisms have been evaluated in all the cheese samples, and the significant differences between the defective and non-defective cheeses have been critically discussed. At a microstructural level, the defects caused fat coalescence and an unevenly organised protein matrix with small cracks in the proximity of the openings. The different fat organisation was correlated to a different transverse relaxation time of 1H population relaxing at higher times. The textural and colour features were not different from those of the control cheeses and were comparable with those reported in the literature for other long-ripened hard cheeses. On the other hand, the defective cheeses showed a higher moisture level and lower lactobacilli and total mesophilic bacteria concentrations, but the microbial origin of the defect remains an open hypothesis that deserves further investigation.

4.
Front Microbiol ; 14: 1154508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180227

RESUMO

In cheese production, microorganisms are usually added at the beginning of the process as primary starters to drive curd acidification, while secondary microorganisms, with other pro-technological features important for cheese ripening, are added as selected cultures. This research aimed to investigate the possibilities of influencing and selecting the raw milk microbiota using artisanal traditional methods, providing a simple method to produce a natural supplementary culture. We investigated the production of an enriched raw milk whey culture (eRWC), a natural adjunct microbial culture produced from mixing an enriched raw milk (eRM) with a natural whey culture (NWC). The raw milk was enriched by spontaneous fermentation for 21 d at 10°C. Three milk enrichment protocols were tested: heat treatment before incubation, heat treatment plus salt addition, and no treatment. The eRMs were then co-fermented with NWC (ratio of 1:10) at 38°C for 6 h (young eRWC) and 22 h (old eRWC). Microbial diversity during cultures' preparation was evaluated through the determination of colony forming units on selective growth media, and next-generation sequencing (16S rRNA gene amplicon sequencing). The enrichment step increased the streptococci and lactobacilli but reduced microbial richness and diversity of the eRMs. Although the lactic acid bacteria viable count was not significantly different between the eRWCs, they harbored higher microbial richness and diversity than NWC. Natural adjunct cultures were then tested in cheese making trials, following the microbial development, and assessing the chemical quality of the 120 d ripened cheeses. The use of eRWCs slowed the curd acidification in the first hours of cheese making but the pH 24 h after production settled to equal values for all the cheeses. Although the use of diverse eRWCs contributed to having a richer and more diverse microbiota in the early stages of cheese making, their effect decreased over time during ripening, showing an inferior effect to the raw milk microbiota. Even if more research is needed, the optimization of such a tool could be an alternative to the practice of isolating, geno-pheno-typing, and formulating mixed-defined-strain adjunct cultures that require knowledge and facilities not always available for artisanal cheese makers.

5.
Front Microbiol ; 13: 1092224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713157

RESUMO

Lactic Acid Bacteria (LAB) exert a fundamental activity in cheese production, as starter LAB in curd acidification, or non-starter LAB (NSLAB) during ripening, in particular in flavor formation. NSLAB originate from the farm and dairy environment, becoming natural contaminants of raw milk where they are present in very low concentrations. Afterward, throughout the different cheesemaking processes, they withstand chemical and physical stresses becoming dominant in ripened cheeses. However, despite a great body of knowledge is available in the literature about NSLAB effect on cheese ripening, the investigations regarding their presence and abundance in raw milk are still poor. With the aim to answer the initial question: "which and how many LAB are present in cow raw milk used for cheese production?," this review has been divided in two main parts. The first one gives an overview of LAB presence in the complex microbiota of raw milk through the meta-analysis of recent taxonomic studies. In the second part, we present a collection of data about LAB quantification in raw milk by culture-dependent analysis, retrieved through a systematic review. Essentially, the revision of data obtained by plate counts on selective agar media showed an average higher concentration of coccoid LAB than lactobacilli, which was found to be consistent with meta-taxonomic analysis. The advantages of the impedometric technique applied to the quantification of LAB in raw milk were also briefly discussed with a focus on the statistical significance of the obtainable data. Furthermore, this approach was also found to be more accurate in highlighting that microorganisms other than LAB are the major component of raw milk. Nevertheless, the variability of the results observed in the studies based on the same counting methodology, highlights that different sampling methods, as well as the "history" of milk before analysis, are variables of great importance that need to be considered in raw milk analysis.

6.
Foods ; 9(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806519

RESUMO

Nostrano Valtrompia is a hard, long-ripened, Italian Protected Designation of Origin (PDO) cheese typically produced by applying traditional cheesemaking practices in small dairies. Due to the limited production, this cheese is characterized by an important market price. Nostrano Valtrompia physico-chemical and sensory quality can be influenced by the duration and conditions of ripening. The objectives of this work were to characterize the physico-chemical and sensory characteristics of Nostrano Valtrompia cheese ripened for 12 and 16 months and to study the influence of different ripening warehouses: a temperature conditioned warehouse (TCW) and in a traditional, not conditioned warehouse (TNCW). The moisture gradient from the rind to the center of the cheese influenced texture, moisture, aw and color. Ripening in different warehouses did not affect the overall appreciation of the cheese nor other physico-chemical (color, moisture) or sensory traits. TCW cheeses were characterized by a slightly softer texture, slightly different openings distribution, and a different sensory perception than TNCW cheeses. These minor differences were related to the less variable environmental ripening conditions of TCW than TNCW. The results of this study can be useful to support the management of the ripening conditions of Nostrano Valtrompia PDO cheese and to rationally introduce new, suitable ripening sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA