Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 8(13): 6986-93, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26976266

RESUMO

Cathodoluminescence (CL) experiments at low temperature have been undertaken on various bulk and exfoliated hexagonal boron nitride (hBN) samples. Different bulk crystals grown from different synthesis methods have been studied. All of them present the same so-called S series in the 5.6-6 eV range, proving its intrinsic character. Luminescence spectra of flakes containing 100 down to 6 layers have been recorded. Strong modifications in the same UV range are observed and discussed within the general framework of 2D exciton properties in lamellar crystals.

2.
Nano Lett ; 16(3): 1614-9, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26866446

RESUMO

Quantum mechanical effects induced by the miniaturization of complementary metal-oxide-semiconductor (CMOS) technology hamper the performance and scalability prospects of field-effect transistors. However, those quantum effects, such as tunneling and coherence, can be harnessed to use existing CMOS technology for quantum information processing. Here, we report the observation of coherent charge oscillations in a double quantum dot formed in a silicon nanowire transistor detected via its dispersive interaction with a radio frequency resonant circuit coupled via the gate. Differential capacitance changes at the interdot charge transitions allow us to monitor the state of the system in the strong-driving regime where we observe the emergence of Landau-Zener-Stückelberg-Majorana interference on the phase response of the resonator. A theoretical analysis of the dispersive signal demonstrates that quantum and tunneling capacitance changes must be included to describe the qubit-resonator interaction. Furthermore, a Fourier analysis of the interference pattern reveals a charge coherence time, T2 ≈ 100 ps. Our results demonstrate charge coherent control and readout in a simple silicon transistor and open up the possibility to implement charge and spin qubits in existing CMOS technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA