Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Radiat Biol ; 97(7): 888-905, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970757

RESUMO

PURPOSE: In case of a mass-casualty radiological event, there would be a need for networking to overcome surge limitations and to quickly obtain homogeneous results (reported aberration frequencies or estimated doses) among biodosimetry laboratories. These results must be consistent within such network. Inter-laboratory comparisons (ILCs) are widely accepted to achieve this homogeneity. At the European level, a great effort has been made to harmonize biological dosimetry laboratories, notably during the MULTIBIODOSE and RENEB projects. In order to continue the harmonization efforts, the RENEB consortium launched this intercomparison which is larger than the RENEB network, as it involves 38 laboratories from 21 countries. In this ILC all steps of the process were monitored, from blood shipment to dose estimation. This exercise also aimed to evaluate the statistical tools used to compare laboratory performance. MATERIALS AND METHODS: Blood samples were irradiated at three different doses, 1.8, 0.4 and 0 Gy (samples A, C and B) with 4-MV X-rays at 0.5 Gy min-1, and sent to the participant laboratories. Each laboratory was requested to blindly analyze 500 cells per sample and to report the observed frequency of dicentric chromosomes per metaphase and the corresponding estimated dose. RESULTS: This ILC demonstrates that blood samples can be successfully distributed among laboratories worldwide to perform biological dosimetry in case of a mass casualty event. Having achieved a substantial harmonization in multiple areas among the RENEB laboratories issues were identified with the available statistical tools, which are not capable to advantageously exploit the richness of results of a large ILCs. Even though Z- and U-tests are accepted methods for biodosimetry ILCs, setting the number of analyzed metaphases to 500 and establishing a tests' common threshold for all studied doses is inappropriate for evaluating laboratory performance. Another problem highlighted by this ILC is the issue of the dose-effect curve diversity. It clearly appears that, despite the initial advantage of including the scoring specificities of each laboratory, the lack of defined criteria for assessing the robustness of each laboratory's curve is a disadvantage for the 'one curve per laboratory' model. CONCLUSIONS: Based on our study, it seems relevant to develop tools better adapted to the collection and processing of results produced by the participant laboratories. We are confident that, after an initial harmonization phase reached by the RENEB laboratories, a new step toward a better optimization of the laboratory networks in biological dosimetry and associated ILC is on the way.


Assuntos
Laboratórios , Radiometria , Aberrações Cromossômicas/efeitos da radiação , Humanos , Exposição à Radiação , Reprodutibilidade dos Testes
2.
Phys Med Biol ; 64(8): 085005, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30650402

RESUMO

A new methodology for assessing linear energy transfer (LET) and relative biological effectiveness (RBE) in proton therapy beams using thermoluminescent detectors is presented. The method is based on the different LET response of two different lithium fluoride thermoluminescent detectors (LiF:Mg,Ti and LiF:Mg,Cu,P) for measuring charged particles. The relative efficiency of the two detector types was predicted using the recently developed Microdosimetric d(z) Model in combination with the Monte Carlo code PHITS. Afterwards, the calculated ratio of the expected response of the two detector types was correlated with the fluence- and dose- mean values of the unrestricted proton LET. Using the obtained proton dose mean LET as input, the RBE was assessed using a phenomenological biophysical model of cell survival. The aforementioned methodology was benchmarked by exposing the detectors at different depths within the spread out Bragg peak (SOBP) of a clinical proton beam at iThemba LABS. The assessed LET values were found to be in good agreement with the results of radiation transport computer simulations performed using the Monte Carlo code GEANT4. Furthermore, the estimated RBE values were compared with the RBE values experimentally determined by performing colony survival measurements with Chinese Hamster Ovary (CHO) cells during the same experimental run. A very good agreement was found between the results of the proposed methodology and the results of the in vitro study.


Assuntos
Transferência Linear de Energia , Terapia com Prótons/instrumentação , Eficiência Biológica Relativa , Animais , Células CHO , Sobrevivência Celular , Cricetinae , Cricetulus , Humanos , Método de Monte Carlo , Terapia com Prótons/métodos
3.
Int J Radiat Biol ; 93(1): 75-80, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27559844

RESUMO

PURPOSE: The RENEB accident exercise was carried out in order to train the RENEB participants in coordinating and managing potentially large data sets that would be generated in case of a major radiological event. MATERIALS AND METHODS: Each participant was offered the possibility to activate the network by sending an alerting email about a simulated radiation emergency. The same participant had to collect, compile and report capacity, triage categorization and exposure scenario results obtained from all other participants. The exercise was performed over 27 weeks and involved the network consisting of 28 institutes: 21 RENEB members, four candidates and three non-RENEB partners. RESULTS: The duration of a single exercise never exceeded 10 days, while the response from the assisting laboratories never came later than within half a day. During each week of the exercise, around 4500 samples were reported by all service laboratories (SL) to be examined and 54 scenarios were coherently estimated by all laboratories (the standard deviation from the mean of all SL answers for a given scenario category and a set of data was not larger than 3 patient codes). CONCLUSIONS: Each participant received training in both the role of a reference laboratory (activating the network) and of a service laboratory (responding to an activation request). The procedures in the case of radiological event were successfully established and tested.


Assuntos
Planejamento em Desastres/organização & administração , Monitoramento de Radiação/métodos , Liberação Nociva de Radioativos , Radiobiologia/educação , Gestão da Segurança/organização & administração , Triagem/organização & administração , Europa (Continente)
4.
Int J Radiat Biol ; 93(1): 36-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27673504

RESUMO

PURPOSE: In the framework of the 'Realizing the European Network of Biodosimetry' (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. MATERIALS AND METHODS: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. RESULTS: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (≤ 0.94 Gy). For higher dose points (≥ 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. CONCLUSION: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas/efeitos da radiação , Testes para Micronúcleos/métodos , Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Bioensaio/normas , Europa (Continente) , Humanos , Linfócitos/efeitos da radiação , Monitoramento de Radiação/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
Int J Radiat Biol ; 93(1): 20-29, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27766931

RESUMO

PURPOSE: Two quality controlled inter-laboratory exercises were organized within the EU project 'Realizing the European Network of Biodosimetry (RENEB)' to further optimize the dicentric chromosome assay (DCA) and to identify needs for training and harmonization activities within the RENEB network. MATERIALS AND METHODS: The general study design included blood shipment, sample processing, analysis of chromosome aberrations and radiation dose assessment. After manual scoring of dicentric chromosomes in different cell numbers dose estimations and corresponding 95% confidence intervals were submitted by the participants. RESULTS: The shipment of blood samples to the partners in the European Community (EU) were performed successfully. Outside the EU unacceptable delays occurred. The results of the dose estimation demonstrate a very successful classification of the blood samples in medically relevant groups. In comparison to the 1st exercise the 2nd intercomparison showed an improvement in the accuracy of dose estimations especially for the high dose point. CONCLUSIONS: In case of a large-scale radiological incident, the pooling of ressources by networks can enhance the rapid classification of individuals in medically relevant treatment groups based on the DCA. The performance of the RENEB network as a whole has clearly benefited from harmonization processes and specific training activities for the network partners.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas/efeitos da radiação , Testes para Micronúcleos/métodos , Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Bioensaio/normas , Europa (Continente) , Humanos , Linfócitos/efeitos da radiação , Monitoramento de Radiação/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
6.
Int J Radiat Biol ; 90(2): 149-58, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24168313

RESUMO

PURPOSE: To investigate both the formation of micronuclei (MN) and the induction and subsequent loss of phosphorylated histone H2AX foci (γH2AX foci) after in vitro exposure of human lymphocytes to either (60)Co γ-rays or p(66)+ Be(40) neutrons. MATERIALS AND METHODS: MN dose response (DR) curves were obtained by exposing isolated lymphocytes of 10 different donors to doses ranging from 0-4 Gy γ-rays or 0-2 Gy neutrons. Also, γH2AX foci DR curves were obtained following exposure to doses ranging from 0-0.5 Gy of either γ-rays or neutrons. Foci kinetics for lymphocytes for a single donor exposed to 0.5 Gy γ-rays or neutrons were studied up to 24 hours post-irradiation. RESULTS: Micronuclei yields following neutron exposure were consistently higher compared to that from (60)Co γ-rays. All MN yields were over-dispersed compared to a Poisson distribution. Over-dispersion was higher after neutron irradiation for all doses > 0.1 Gy. Up to 4 hours post-irradiation lower yields of neutron-induced γH2AX foci were observed. Between 4 and 24 hours the numbers of foci from neutrons were consistently higher than that from γ-rays. The half-live of foci disappearance is only marginally longer for neutrons compared to that from γ-rays. Foci formations were more likely to be over-dispersed for neutron irradiations. CONCLUSION: Although neutrons are more effective to induce MN, the absolute number of induced γH2AX foci are less at first compared to γ-rays. With time neutron-induced foci are more persistent. These findings are helpful for using γH2AX foci in biodosimetry and to understand the repair of neutron-induced cellular damage.


Assuntos
Raios gama , Histonas/análise , Linfócitos/efeitos da radiação , Micronúcleos com Defeito Cromossômico , Nêutrons , Adulto , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Relação Dose-Resposta à Radiação , Feminino , Loci Gênicos , Humanos , Linfócitos/ultraestrutura , Masculino , Pessoa de Meia-Idade , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA