Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Compr Physiol ; 12(4): 4185-4214, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073751

RESUMO

Circadian rhythms are endogenously generated, daily patterns of behavior and physiology that are essential for optimal health and disease prevention. Disruptions to circadian timing are associated with a host of maladies, including metabolic disease and obesity, diabetes, heart disease, cancer, and mental health disturbances. The circadian timing system is hierarchically organized, with a master circadian clock located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks throughout the CNS and periphery. The SCN receives light information via a direct retinal pathway, synchronizing the master clock to environmental time. At the cellular level, circadian rhythms are ubiquitous, with rhythms generated by interlocking, autoregulatory transcription-translation feedback loops. At the level of the SCN, tight cellular coupling maintains rhythms even in the absence of environmental input. The SCN, in turn, communicates timing information via the autonomic nervous system and hormonal signaling. This signaling couples individual cellular oscillators at the tissue level in extra-SCN brain loci and the periphery and synchronizes subordinate clocks to external time. In the modern world, circadian disruption is widespread due to limited exposure to sunlight during the day, exposure to artificial light at night, and widespread use of light-emitting electronic devices, likely contributing to an increase in the prevalence, and the progression, of a host of disease states. The present overview focuses on the circadian control of endocrine secretions, the significance of rhythms within key endocrine axes for typical, homeostatic functioning, and implications for health and disease when dysregulated. © 2022 American Physiological Society. Compr Physiol 12: 1-30, 2022.


Assuntos
Transtornos Cronobiológicos , Relógios Circadianos , Doenças Metabólicas , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Humanos , Núcleo Supraquiasmático/fisiologia
2.
Front Physiol ; 13: 886298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770190

RESUMO

Psychological stress, both leading up to and during pregnancy, is associated with increased risk for negative pregnancy outcomes. Although the neuroendocrine circuits that link the stress response to reduced sexual motivation and mating are well-described, the specific pathways by which stress negatively impacts gestational outcomes remain unclear. Using a mouse model of chronic psychological stress during pregnancy, we investigated 1) how chronic exposure to stress during gestation impacts maternal reproductive neuroendocrine circuitry, and 2) whether stress alters developmental outcomes for the fetus or placenta by mid-pregnancy. Focusing on the stress-responsive neuropeptide RFRP-3, we identified novel contacts between RFRP-3-immunoreactive (RFRP-3-ir) cells and tuberoinfundibular dopaminergic neurons in the arcuate nucleus, thus providing a potential pathway linking the neuroendocrine stress response directly to pituitary prolactin production and release. However, neither of these cell populations nor circulating levels of pituitary hormones were affected by chronic stress. Conversely, circulating levels of steroid hormones relevant to gestational outcomes (progesterone and corticosterone) were altered in chronically-stressed dams across gestation, and those dams were qualitatively more likely to experience delays in fetal development. Together, these findings suggest that, up until at least mid-pregnancy, mothers appear to be relatively resilient to the effects of elevated glucocorticoids on reproductive neuroendocrine system function. We conclude that understanding how chronic psychological stress impacts reproductive outcomes will require understanding individual susceptibility and identifying reliable neuroendocrine changes resulting from gestational stress.

3.
Brain Behav Immun ; 80: 805-817, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31108169

RESUMO

Circadian rhythms influence various aspects of biology, including hormonal, immunological, and behavioral processes. These 24-hour oscillations are necessary to optimize cellular functions and to synchronize these processes with the environment. Breast cancer patients and survivors frequently report disruptions in circadian oscillations that adversely affect quality-of-life, including fragmented sleep-wake cycles and flattened cortisol rhythms, which are associated with negative behavioral comorbidities (e.g., fatigue). However, the potential causal role of tumor biology in circadian dysregulation has not been investigated. Here, we examined the extent to which sham surgery, non-metastatic mammary tumors, or mammary tumor removal in mice disrupts circadian rhythms in brain clock gene expression, locomotor behavior (free-running and entrained), and physiological rhythms that have been associated with cancer behavioral comorbidities. Tumors and tumor resection altered time-of-day differences in hypothalamic expression of eight circadian-regulated genes. The onset of activity in entrained running behavior was advanced in tumor-bearing mice, and the amplitude of free-running rhythms was increased in tumor-resected mice. Tumors flattened rhythms in circulating corticosterone and Ly6cHi monocytes which were largely restored by surgical tumor resection. This work implies that tumors alone may directly impact central and/or peripheral circadian rhythmicity in breast cancer patients, and that these effects may persist in cancer survivors, potentially contributing to behavioral comorbidities.


Assuntos
Ritmo Circadiano/genética , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Corticosterona/metabolismo , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Hipotálamo/metabolismo , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Experimentais/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Atividade Motora/fisiologia
4.
Sci Rep ; 9(1): 6497, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31019214

RESUMO

Improvements in breast cancer therapy/diagnosis have substantially increased the cancer survivor population, although many survivors report persistent mental health issues including fatigue, mood and anxiety disorders, and cognitive impairments. These behavioral symptoms impair quality-of-life and are often associated with increased inflammation. Nocturnal rodent models of cancer are critical to the identification of the neurobiological mechanisms underlying these behavioral changes. Although both behavior and immunity display distinct diurnal patterns, most rodent research in this field is performed during the rodents' inactive (light) period, which could potentially undermine the conclusions and clinical relevance. Therefore, here we tested the extent to which mammary tumors or tumor resection ("survivors") in mice affects behavior and neuroinflammation in a nyctohemeral (day versus night)-dependent manner. Indeed, only the dark (active) phase unmasked fatigue-like behavior and altered novel object investigation for both tumor-bearing and -resected mice relative to surgical controls. Several inflammatory markers were expressed in a time-of-day-dependent manner (lower in the dark phase) in the blood and brains of surgical control mice, whereas this temporal pattern was absent (IL-1ß, CXCL1, Myd88, Cd4) or reversed (C3) in the respective tissues of tumor-bearing and -resected mice. Taken together, these data indicate that the time of day of assessment significantly modulates various persistent and transient tumor-induced behavioral and immune changes.


Assuntos
Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Depressão/fisiopatologia , Fadiga/fisiopatologia , Inflamação/fisiopatologia , Neoplasias Mamárias Experimentais/fisiopatologia , Animais , Ansiedade/psicologia , Biomarcadores Tumorais/análise , Linhagem Celular Tumoral , Depressão/psicologia , Modelos Animais de Doenças , Fadiga/psicologia , Feminino , Hábitos , Humanos , Inflamação/psicologia , Neoplasias Mamárias Experimentais/psicologia , Camundongos Endogâmicos BALB C , Fatores de Tempo
5.
Sci Rep ; 9(1): 752, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679700

RESUMO

Breast cancer survivors display altered inflammatory responses to immune challenges relative to cancer-naive controls likely due to previous cancer treatments, stress associated with cancer, and/or tumor physiology. Proper inflammatory responses are necessary for adaptive sickness behaviors (e.g., fatigue, anorexia, and fever) and neuroinflammatory pathways are also implicated in mental health disturbances (e.g., cognitive impairment, depression) suffered by cancer patients and survivors. Rodent cancer models indicate that tumors are sufficient to exacerbate neuroinflammatory responses after an immune challenge, however primary tumors are not usually present in cancer survivors, and the behavioral consequences of these brain changes remain understudied. Therefore, we tested the extent to which mammary tumor resection attenuates tumor-induced neuroinflammation and sickness behavior following an immune challenge (i.p. lipopolysaccharide [LPS] injection) in mice. Tnf-α, Il-1ß, and Il-6 mRNA decreased in multiple brain regions of LPS-treated tumor-bearing mice relative to LPS-treated controls; tumor resection attenuated these effects in some cases (but not Tnf-α). Tumors also attenuated sickness behaviors (hypothermia and lethargy) compared to LPS-treated controls. Tumor resection reversed these behavioral consequences, although basal body temperature remained elevated, comparable to tumor-bearing mice. Thus, tumors significantly modulate neuroinflammatory pathways with functional consequences and tumor resection mitigates most, but not all, of these changes.


Assuntos
Neoplasias da Mama/imunologia , Comportamento de Doença , Inflamação/imunologia , Glândulas Mamárias Animais/imunologia , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Sobreviventes de Câncer , Depressão/etiologia , Depressão/imunologia , Depressão/patologia , Feminino , Hipocampo/imunologia , Hipocampo/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Inflamação/cirurgia , Interleucina-1beta/imunologia , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/cirurgia , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/cirurgia , Camundongos , Fator de Necrose Tumoral alfa/imunologia
6.
Physiol Behav ; 197: 42-50, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30248302

RESUMO

Immune activity influences reproduction, however, the extent to which mating experience may inversely alter immune pathways is poorly understood. A few studies in humans suggest that mating triggers a circulating immune and hypothalamic-pituitary-adrenal axis response. In male rats, mating experience enhances neuroplasticity and improves cognitive function and affective-like behavior, independent of the physical activity component. Yet, the extent to which mating experience may influence immune responses in the brain remain unexplored. Here, we hypothesized that recent mating experience in male rats increases neuroinflammatory signaling (via lipopolysaccharide [LPS] stimulation, i.p.) and associated sickness behaviors (i.e., food intake, weight loss) relative to sexually-naïve controls. Virgin male rats were exposed to a sexually non-receptive (control) or sexually-receptive female for 30 min for six consecutive days. Immediately following the last mating experience, rats were administered a saline or LPS injection and euthanized four hours later. Mating increased Tnfα responses to LPS in the brain, which positively correlated with LPS-induced weight loss. Mating also increased peripheral corticosterone among saline-treated rats, but this corticosterone response was attenuated in the most proficient copulators (e.g., shortest latencies). Thus, recent mating experience may be a unique modulator of select stimulated inflammatory signals that are relevant to adaptive neuroimmune responses and behavior.


Assuntos
Encéfalo/imunologia , Inflamação/imunologia , Comportamento Sexual Animal/fisiologia , Animais , Corticosterona/sangue , Regulação da Expressão Gênica , Comportamento de Doença/fisiologia , Lipopolissacarídeos , Masculino , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Redução de Peso/imunologia
7.
Neuroimmunomodulation ; 24(2): 74-86, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28898868

RESUMO

OBJECTIVE: Repeated subthreshold bacterial exposures in rodents cause novel euflammation that attenuates neuroinflammation and sickness behaviors upon subsequent infectious challenges to the host without eliciting illness behavior. The investigation of bacterial exposure effects on brain and behavior is clinically relevant because bacterial-based antitumor treatments are used successfully, but are suboptimal due to their illness side effects. In addition, behavioral consequences (depression, cognitive impairments) to homeostatic challenges that are associated with inflammation are prevalent and reduce the quality of life in cancer patients and survivors. Therefore, this study tested the potential for euflammation to attenuate behavioral consequences of an immune challenge in tumor-bearing mice. METHODS: Mice with and without oral tumors in their flank underwent the established peripheral euflammatory protocol or vehicle treatment, followed by an acute peripheral immune challenge (lipopolysaccharide [LPS] injection) or PBS. Cognitive function and sickness behavior were assessed after the challenge, and peripheral and central inflammatory responses were measured. RESULTS: Euflammation reduced LPS-induced peripheral and central inflammation in all mice; however, neuroinflammation was less attenuated in tumor-bearing mice compared with tumor-free controls. LPS-induced lethargy and cognitive impairments were more pronounced among tumor-bearing mice and were effectively attenuated with euflammation. Cognitive changes were independent of brain-derived growth factor gene expression in the hippocampus. CONCLUSION: These results suggest that induction of euflammation may be useful in alleviating the negative side effects of bacterial-based tumor treatments and in potentially attenuating common behavioral comorbidities associated with cancer or other chronic diseases.


Assuntos
Infecções Bacterianas/imunologia , Inflamação/imunologia , Neoplasias Bucais/imunologia , Neuroimunomodulação/imunologia , Animais , Cognição , Transtornos Cognitivos/imunologia , Comportamento de Doença/fisiologia , Inflamação/induzido quimicamente , Inflamação/microbiologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Neoplasias Bucais/complicações
8.
Behav Brain Res ; 330: 108-117, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28479263

RESUMO

Breast cancer survivors are an expanding population that is troubled by lasting mental health problems, including depression and anxiety. These issues reduce quality-of-life throughout survivorhood. Research indicates that tumor biology, cancer treatments, and stress contribute to these mood disturbances. Although the mechanisms underlying these various causes remain under investigation, neuroinflammation is a leading hypothesis. To date, rodent models of recurrence-free tumor survival for understanding mechanisms by which these behavioral issues persist after cancer are lacking. Here, we test the extent to which potential behavioral symptoms persist after mammary tumor removal in mice (i.e., establishment of a cancer survivor model), while also empirically testing the causal role of tumors in the development of neuroinflammatory-mediated affective-like behaviors. Complete surgical resection of a non-metastatic orthotopic, syngeneic mammary tumor reversed tumor-induced increases of circulating cytokines (IL-6, CXCL1, IL-10) and myeloid-derived cells and modulated neuroinflammatory gene expression (Cd11b, Cxcl1). Multiple anxiety-like behaviors and some central and peripheral immune markers persisted or progressed three weeks after tumor resection. Together, these data indicate that persistent behavioral changes into cancer survivorhood may be due, in part, to changes in immunity that remain even after successful tumor removal. This novel survivor paradigm represents an improvement in modeling prevalent cancer survivorship issues and studying the basic mechanisms by which cancer/cancer treatments influence the brain and behavior.


Assuntos
Ansiedade/imunologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/psicologia , Animais , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Encéfalo/metabolismo , Neoplasias da Mama/metabolismo , Depressão/etiologia , Depressão/imunologia , Transtorno Depressivo/imunologia , Transtorno Depressivo/metabolismo , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/fisiopatologia , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transtornos do Humor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA