Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Comput Methods Programs Biomed ; 257: 108408, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39342876

RESUMO

BACKGROUND AND OBJECTIVE: In Pancreatic Ductal Adenocarcinoma (PDA), multi-omic models are emerging to answer unmet clinical needs to derive novel quantitative prognostic factors. We realized a pipeline that relies on survival machine-learning (SML) classifiers and explainability based on patients' follow-up (FU) to stratify prognosis from the public-available multi-omic datasets of the CPTAC-PDA project. MATERIALS AND METHODS: Analyzed datasets included tumor-annotated radiologic images, clinical, and mutational data. A feature selection was based on univariate (UV) and multivariate (MV) survival analyses according to Overall Survival (OS) and recurrence (REC). In this study, we considered seven multi-omic datasets and compared four SML classifiers: Cox, survival random forest, generalized boosted, and support vector machines (SVM). For each classifier, we assessed the concordance (C) index on the validation set. The best classifiers for the validation set on both OS and REC underwent explainability analyses using SurvSHAP(t), which extends SHapley Additive exPlanations (SHAP). RESULTS: According to OS, after UV and MV analyses we selected 18/37 and 10/37 multi-omic features, respectively. According to REC, based on UV and MV analyses we selected 10/35 and 5/35 determinants, respectively. Generally, SML classifiers including radiomics outperformed those modelled on clinical or mutational predictors. For OS, the Cox model encompassing radiomic, clinical, and mutational features reached 75 % of C index, outperforming other classifiers. On the other hand, for REC, the SVM model including only radiomics emerged as the best-performing, with 68 % of C index. For OS, SurvSHAP(t) identified the first order Median Gray Level (GL) intensities, the gender, the tumor grade, the Joint Energy GL Co-occurrence Matrix (GLCM), and the GLCM Informational Measures of Correlations of type 1 as the most important features. For REC, the first order Median GL intensities, the GL size zone matrix Small Area Low GL Emphasis, and first order variance of GL intensities emerged as the most discriminative. CONCLUSIONS: In this work, radiomics showed the potential for improving patients' risk stratification in PDA. Furthermore, a deeper understanding of how radiomics can contribute to prognosis in PDA was achieved with a time-dependent explainability of the top multi-omic predictors.

2.
IEEE J Biomed Health Inform ; 28(6): 3422-3433, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38635390

RESUMO

The identification of EEG biomarkers to discriminate Subjective Cognitive Decline (SCD) from Mild Cognitive Impairment (MCI) conditions is a complex task which requires great clinical effort and expertise. We exploit the self-attention component of the Transformer architecture to obtain physiological explanations of the model's decisions in the discrimination of 56 SCD and 45 MCI patients using resting-state EEG. Specifically, an interpretability workflow leveraging attention scores and time-frequency analysis of EEG epochs through Continuous Wavelet Transform is proposed. In the classification framework, models are trained and validated with 5-fold cross-validation and evaluated on a test set obtained by selecting 20% of the total subjects. Ablation studies and hyperparameter tuning tests are conducted to identify the optimal model configuration. Results show that the best performing model, which achieves acceptable results both on epochs' and patients' classification, is capable of finding specific EEG patterns that highlight changes in the brain activity between the two conditions. We demonstrate the potential of attention weights as tools to guide experts in understanding which disease-relevant EEG features could be discriminative of SCD and MCI.


Assuntos
Disfunção Cognitiva , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico , Masculino , Feminino , Idoso , Processamento de Sinais Assistido por Computador , Pessoa de Meia-Idade , Encéfalo/fisiopatologia , Encéfalo/fisiologia , Análise de Ondaletas , Atenção/fisiologia , Algoritmos
3.
Sensors (Basel) ; 24(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38610410

RESUMO

Frameworks for human activity recognition (HAR) can be applied in the clinical environment for monitoring patients' motor and functional abilities either remotely or within a rehabilitation program. Deep Learning (DL) models can be exploited to perform HAR by means of raw data, thus avoiding time-demanding feature engineering operations. Most works targeting HAR with DL-based architectures have tested the workflow performance on data related to a separate execution of the tasks. Hence, a paucity in the literature has been found with regard to frameworks aimed at recognizing continuously executed motor actions. In this article, the authors present the design, development, and testing of a DL-based workflow targeting continuous human activity recognition (CHAR). The model was trained on the data recorded from ten healthy subjects and tested on eight different subjects. Despite the limited sample size, the authors claim the capability of the proposed framework to accurately classify motor actions within a feasible time, thus making it potentially useful in a clinical scenario.


Assuntos
Aprendizado Profundo , Humanos , Atividades Humanas , Atividades Cotidianas , Engenharia , Voluntários Saudáveis
4.
Sensors (Basel) ; 24(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38610540

RESUMO

In the field of neuroscience, brain-computer interfaces (BCIs) are used to connect the human brain with external devices, providing insights into the neural mechanisms underlying cognitive processes, including aesthetic perception. Non-invasive BCIs, such as EEG and fNIRS, are critical for studying central nervous system activity and understanding how individuals with cognitive deficits process and respond to aesthetic stimuli. This study assessed twenty participants who were divided into control and impaired aging (AI) groups based on MMSE scores. EEG and fNIRS were used to measure their neurophysiological responses to aesthetic stimuli that varied in pleasantness and dynamism. Significant differences were identified between the groups in P300 amplitude and late positive potential (LPP), with controls showing greater reactivity. AI subjects showed an increase in oxyhemoglobin in response to pleasurable stimuli, suggesting hemodynamic compensation. This study highlights the effectiveness of multimodal BCIs in identifying the neural basis of aesthetic appreciation and impaired aging. Despite its limitations, such as sample size and the subjective nature of aesthetic appreciation, this research lays the groundwork for cognitive rehabilitation tailored to aesthetic perception, improving the comprehension of cognitive disorders through integrated BCI methodologies.


Assuntos
Interfaces Cérebro-Computador , Humanos , Envelhecimento , Encéfalo , Estética , Percepção
5.
Comput Methods Programs Biomed ; 244: 107966, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38091844

RESUMO

BACKGROUND: In Diffuse Large B-Cell Lymphoma (DLBCL), several methodologies are emerging to derive novel biomarkers to be incorporated in the risk assessment. We realized a pipeline that relies on autoencoders (AE) and Explainable Artificial Intelligence (XAI) to stratify prognosis and derive a gene-based signature. METHODS: AE was exploited to learn an unsupervised representation of the gene expression (GE) from three publicly available datasets, each with its own technology. Multi-layer perceptron (MLP) was used to classify prognosis from latent representation. GE data were preprocessed as normalized, scaled, and standardized. Four different AE architectures (Large, Medium, Small and Extra Small) were compared to find the most suitable for GE data. The joint AE-MLP classified patients on six different outcomes: overall survival at 12, 36, 60 months and progression-free survival (PFS) at 12, 36, 60 months. XAI techniques were used to derive a gene-based signature aimed at refining the Revised International Prognostic Index (R-IPI) risk, which was validated in a fourth independent publicly available dataset. We named our tool SurvIAE: Survival prediction with Interpretable AE. RESULTS: From the latent space of AEs, we observed that scaled and standardized data reduced the batch effect. SurvIAE models outperformed R-IPI with Matthews Correlation Coefficient up to 0.42 vs. 0.18 for the validation-set (PFS36) and to 0.30 vs. 0.19 for the test-set (PFS60). We selected the SurvIAE-Small-PFS36 as the best model and, from its gene signature, we stratified patients in three risk groups: R-IPI Poor patients with High levels of GAB1, R-IPI Poor patients with Low levels of GAB1 or R-IPI Good/Very Good patients with Low levels of GPR132, and R-IPI Good/Very Good patients with High levels of GPR132. CONCLUSIONS: SurvIAE showed the potential to derive a gene signature with translational purpose in DLBCL. The pipeline was made publicly available and can be reused for other pathologies.


Assuntos
Inteligência Artificial , Linfoma Difuso de Grandes Células B , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Prognóstico , Expressão Gênica , Estudos Retrospectivos
6.
Front Hum Neurosci ; 17: 1240831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37829821

RESUMO

Introduction: Subtle cognitive dysfunction and mental fatigue are frequent after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, characterizing the so-called long COVID-19 syndrome. This study aimed to correlate cognitive, neurophysiological, and olfactory function in a group of subjects who experienced acute SARS-CoV-2 infection with persistent hyposmia at least 12 weeks before the observation. Methods: For each participant (32 post-COVID-19 patients and 16 controls), electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) data were acquired using an integrated EEG-fNIRS system during the execution of a P300 odd-ball task and a Stroop test. The Sniffin' Sticks test was conducted to assess subjects' olfactory performance. The Montreal Cognitive Assessment (MoCA) and the Frontal Assessment Battery (FAB) were also administered. Results: The post-COVID-19 group consisted of 32 individuals (20 women and 12 men) with an average education level of 12.9 ± 3.12 years, while the control group consisted of 16 individuals (10 women and 6 men) with an average education level of 14.9 ± 3.2 years. There were no significant differences in gender (X2 = 0, p = 1) or age between the two groups (age 44.81 ± 13.9 vs. 36.62 ± 11.4, p = 0.058). We identified a lower concentration of oxyhemoglobin (p < 0.05) at the prefrontal cortical level in post-COVID-19 subjects during the execution of the Stroop task, as well as a reduction in the amplitude of the P3a response. Moreover, we found that post-COVID-19 subjects performed worst at the MoCA screening test (p = 0.001), Sniffin's Sticks test (p < 0.001), and Stroop task response latency test (p < 0.001). Conclusions: This study showed that post-COVID-19 patients with persistent hyposmia present mild deficits in prefrontal function, even 4 months after the end of the infection. These deficits, although subtle, could have long-term implications for quality of life and cognitive wellbeing. It is essential to continue monitoring and evaluating these patients to better understand the extent and duration of cognitive impairments associated with long COVID-19.

7.
Sci Rep ; 13(1): 14887, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689819

RESUMO

The observation of action seems to involve the generation of the internal representation of that same action in the observer, a process named motor resonance (MR). The objective of this study was to verify whether an experimental paradigm of action observation in a laboratory context could elicit cortical motor activation in 21 early Parkinson's disease (PD) patients compared to 22 controls. Participants were instructed to simply observe (observation-only session) or to respond (Time-to-contact detection session) at the instant the agent performed a grasping action toward a graspable or ungraspable object. We used functional near-infrared spectroscopy with 20 channels on the motor and premotor brain areas and event-related desynchronization of alpha-mu rhythm. In both groups, response times were more accurate in graspable than ungraspable object trials, suggesting that motor resonance is present in PD patients. In the Time-to-contact detection session, the oxyhemoglobin levels and alpha-mu desynchronization prevailed in the graspable object trials rather than in the ungraspable ones. This study demonstrates the preservation of MR mechanisms in early PD patients. The action observation finalized to a consequent movement can activate cortical networks in patients with early PD, suggesting early rehabilitation interventions taking into account specific observation paradigms preceding motor production.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Movimento , Ritmo alfa , Encéfalo/diagnóstico por imagem , Intervenção Educacional Precoce
8.
Comput Methods Programs Biomed ; 242: 107814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37722311

RESUMO

BACKGROUND AND OBJECTIVE: The Oxford Classification for IgA nephropathy is the most successful example of an evidence-based nephropathology classification system. The aim of our study was to replicate the glomerular components of Oxford scoring with an end-to-end deep learning pipeline that involves automatic glomerular segmentation followed by classification for mesangial hypercellularity (M), endocapillary hypercellularity (E), segmental sclerosis (S) and active crescents (C). METHODS: A total number of 1056 periodic acid-Schiff (PAS) whole slide images (WSIs), coming from 386 kidney biopsies, were annotated. Several detection models for glomeruli, based on the Mask R-CNN architecture, were trained on 587 WSIs, validated on 161 WSIs, and tested on 127 WSIs. For the development of segmentation models, 20,529 glomeruli were annotated, of which 16,571 as training and 3958 as validation set. The test set of the segmentation module comprised of 2948 glomeruli. For the Oxford classification, 6206 expert-annotated glomeruli from 308 PAS WSIs were labelled for M, E, S, C and split into a training set of 4298 glomeruli from 207 WSIs, and a test set of 1908 glomeruli. We chose the best-performing models to construct an end-to-end pipeline, which we named MESCnn (MESC classification by neural network), for the glomerular Oxford classification of WSIs. RESULTS: Instance segmentation yielded excellent results with an AP50 ranging between 78.2-80.1 % (79.4 ± 0.7 %) on the validation and 75.1-77.7 % (76.5 ± 0.9 %) on the test set. The aggregated Jaccard Index was between 73.4-75.9 % (75.0 ± 0.8 %) on the validation and 69.1-73.4 % (72.2 ± 1.4 %) on the test set. At granular glomerular level, Oxford Classification was best replicated for M with EfficientNetV2-L with a mean ROC-AUC of 90.2 % and a mean precision/recall area under the curve (PR-AUC) of 81.8 %, best for E with MobileNetV2 (ROC-AUC 94.7 %) and ResNet50 (PR-AUC 75.8 %), best for S with EfficientNetV2-M (mean ROC-AUC 92.7 %, mean PR-AUC 87.7 %), best for C with EfficientNetV2-L (ROC-AUC 92.3 %) and EfficientNetV2-S (PR-AUC 54.7 %). At biopsy-level, correlation between expert and deep learning labels fulfilled the demands of the Oxford Classification. CONCLUSION: We designed an end-to-end pipeline for glomerular Oxford Classification on both a granular glomerular and an entire biopsy level. Both the glomerular segmentation and the classification modules are freely available for further development to the renal medicine community.


Assuntos
Aprendizado Profundo , Glomerulonefrite por IGA , Humanos , Glomerulonefrite por IGA/diagnóstico , Glomerulonefrite por IGA/patologia , Taxa de Filtração Glomerular , Glomérulos Renais/patologia , Rim/diagnóstico por imagem
9.
Bioengineering (Basel) ; 10(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37508774

RESUMO

The complex pathobiology of lung cancer, and its spread worldwide, has prompted research studies that combine radiomic and genomic approaches. Indeed, the early identification of genetic alterations and driver mutations affecting the tumor is fundamental for correctly formulating the prognosis and therapeutic response. In this work, we propose a radiogenomic workflow to detect the presence of KRAS and EGFR mutations using radiomic features extracted from computed tomography images of patients affected by lung adenocarcinoma. To this aim, we investigated several feature selection algorithms to identify the most significant and uncorrelated sets of radiomic features and different classification models to reveal the mutational status. Then, we employed the SHAP (SHapley Additive exPlanations) technique to increase the understanding of the contribution given by specific radiomic features to the identification of the investigated mutations. Two cohorts of patients with lung adenocarcinoma were used for the study. The first one, obtained from the Cancer Imaging Archive (TCIA), consisted of 60 cases (25% EGFR, 23% KRAS); the second one, provided by the Azienda Ospedaliero-Universitaria 'Ospedali Riuniti' of Foggia, was composed of 55 cases (16% EGFR, 28% KRAS). The best-performing models proposed in our study achieved an AUC of 0.69 and 0.82 on the validation set for predicting the mutational status of EGFR and KRAS, respectively. The Multi-layer Perceptron model emerged as the top-performing model for both oncogenes, in some cases outperforming the state of the art. This study showed that radiomic features can be associated with EGFR and KRAS mutational status in patients with lung adenocarcinoma.

10.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299744

RESUMO

The study of visuomotor adaptation (VMA) capabilities has been encompassed in various experimental protocols aimed at investigating human motor control strategies and/or cognitive functions. VMA-oriented frameworks can have clinical applications, primarily in the investigation and assessment of neuromotor impairments caused by conditions such as Parkinson's disease or post-stroke, which affect the lives of tens of thousands of people worldwide. Therefore, they can enhance the understanding of the specific mechanisms of such neuromotor disorders, thus being a potential biomarker for recovery, with the aim of being integrated with conventional rehabilitative programs. Virtual Reality (VR) can be entailed in a framework targeting VMA since it allows the development of visual perturbations in a more customizable and realistic way. Moreover, as has been demonstrated in previous works, a serious game (SG) can further increase engagement thanks to the use of full-body embodied avatars. Most studies implementing VMA frameworks have focused on upper limb tasks and have utilized a cursor as visual feedback for the user. Hence, there is a paucity in the literature about VMA-oriented frameworks targeting locomotion tasks. In this article, the authors present the design, development, and testing of an SG-based framework that addresses VMA in a locomotion activity by controlling a full-body moving avatar in a custom VR environment. This workflow includes a set of metrics to quantitatively assess the participants' performance. Thirteen healthy children were recruited to evaluate the framework. Several quantitative comparisons and analyses were run to validate the different types of introduced visuomotor perturbations and to evaluate the ability of the proposed metrics to describe the difficulty caused by such perturbations. During the experimental sessions, it emerged that the system is safe, easy to use, and practical in a clinical setting. Despite the limited sample size, which represents the main limitation of the study and can be compensated for with future recruitment, the authors claim the potential of this framework as a useful instrument for quantitatively assessing either motor or cognitive impairments. The proposed feature-based approach gives several objective parameters as additional biomarkers that can integrate the conventional clinical scores. Future studies might investigate the relation between the proposed biomarkers and the clinical scores for specific disorders such as Parkinson's disease and cerebral palsy.


Assuntos
Doença de Parkinson , Acidente Vascular Cerebral , Realidade Virtual , Criança , Humanos , Doença de Parkinson/diagnóstico , Interface Usuário-Computador , Locomoção
11.
Front Oncol ; 13: 1110999, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168368

RESUMO

Background: Artificial neural networks (ANNs) and logistic regression (LR) are the models of chosen in many medical data classification tasks. Several published articles were based on summarizing the differences and similarities of these models from a technical point of view and critically assessing the quality of the models. The aim of this study was to compare ANN and LR the statistical techniques to predict gastrointestinal cancer in an elderly cohort in Southern Italy (ONCONUT study). Method: In 1992, ONCONUT was started with the aim of evaluating the relationship between diet and cancer development in a Southern Italian elderly population. Patients with gastrointestinal cancer (ICD-10 from 150.0 to 159.9) were included in the study (n = 3,545). Results: This cohort was used to train and test the ANN and LR. LR was evaluated separately for macro- and micronutrients, and the accuracy was evaluated based on true positives and true negatives versus the total (97.15%). Then, ANN was trained and the accuracy was evaluated (96.61% for macronutrients and 97.06% for micronutrients). To further investigate the classification capabilities of ANN, k-fold cross-validation and genetic algorithm (GA) were used after balancing the dataset among classes. Conclusions: Both LR and ANN had high accuracy and similar performance. Both models had the potential to be used as decision clinical support integrated into clinical practice, because in many circumstances, the use of a simple LR model was likely to be adequate for real-world needs, but in others in which there were large amounts of data, the application of advanced analytic tools such as ANNs could be indicated, and the GA optimizer needed to optimize the accuracy of ANN.

12.
Bioengineering (Basel) ; 10(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37106583

RESUMO

The segmentation and classification of cell nuclei are pivotal steps in the pipelines for the analysis of bioimages. Deep learning (DL) approaches are leading the digital pathology field in the context of nuclei detection and classification. Nevertheless, the features that are exploited by DL models to make their predictions are difficult to interpret, hindering the deployment of such methods in clinical practice. On the other hand, pathomic features can be linked to an easier description of the characteristics exploited by the classifiers for making the final predictions. Thus, in this work, we developed an explainable computer-aided diagnosis (CAD) system that can be used to support pathologists in the evaluation of tumor cellularity in breast histopathological slides. In particular, we compared an end-to-end DL approach that exploits the Mask R-CNN instance segmentation architecture with a two steps pipeline, where the features are extracted while considering the morphological and textural characteristics of the cell nuclei. Classifiers that are based on support vector machines and artificial neural networks are trained on top of these features in order to discriminate between tumor and non-tumor nuclei. Afterwards, the SHAP (Shapley additive explanations) explainable artificial intelligence technique was employed to perform a feature importance analysis, which led to an understanding of the features processed by the machine learning models for making their decisions. An expert pathologist validated the employed feature set, corroborating the clinical usability of the model. Even though the models resulting from the two-stage pipeline are slightly less accurate than those of the end-to-end approach, the interpretability of their features is clearer and may help build trust for pathologists to adopt artificial intelligence-based CAD systems in their clinical workflow. To further show the validity of the proposed approach, it has been tested on an external validation dataset, which was collected from IRCCS Istituto Tumori "Giovanni Paolo II" and made publicly available to ease research concerning the quantification of tumor cellularity.

14.
Comput Methods Programs Biomed ; 234: 107511, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011426

RESUMO

BACKGROUND: Histological assessment of colorectal cancer (CRC) tissue is a crucial and demanding task for pathologists. Unfortunately, manual annotation by trained specialists is a burdensome operation, which suffers from problems like intra- and inter-pathologist variability. Computational models are revolutionizing the Digital Pathology field, offering reliable and fast approaches for challenges like tissue segmentation and classification. With this respect, an important obstacle to overcome consists in stain color variations among different laboratories, which can decrease the performance of classifiers. In this work, we investigated the role of Unpaired Image-to-Image Translation (UI2IT) models for stain color normalization in CRC histology and compared to classical normalization techniques for Hematoxylin-Eosin (H&E) images. METHODS: Five Deep Learning normalization models based on Generative Adversarial Networks (GANs) belonging to the UI2IT paradigm have been thoroughly compared to realize a robust stain color normalization pipeline. To avoid the need for training a style transfer GAN between each pair of data domains, in this paper we introduce the concept of training by exploiting a meta-domain, which contains data coming from a wide variety of laboratories. The proposed framework enables a huge saving in terms of training time, by allowing to train a single image normalization model for a target laboratory. To prove the applicability of the proposed workflow in the clinical practice, we conceived a novel perceptive quality measure, which we defined as Pathologist Perceptive Quality (PPQ). The second stage involved the classification of tissue types in CRC histology, where deep features extracted from Convolutional Neural Networks have been exploited to realize a Computer-Aided Diagnosis system based on a Support Vector Machine (SVM). To prove the reliability of the system on new data, an external validation set composed of N = 15,857 tiles has been collected at IRCCS Istituto Tumori "Giovanni Paolo II". RESULTS: The exploitation of a meta-domain consented to train normalization models that allowed achieving better classification results than normalization models explicitly trained on the source domain. PPQ metric has been found correlated to quality of distributions (Fréchet Inception Distance - FID) and to similarity of the transformed image to the original one (Learned Perceptual Image Patch Similarity - LPIPS), thus showing that GAN quality measures introduced in natural image processing tasks can be linked to pathologist evaluation of H&E images. Furthermore, FID has been found correlated to accuracies of the downstream classifiers. The SVM trained on DenseNet201 features allowed to obtain the highest classification results in all configurations. The normalization method based on the fast variant of CUT (Contrastive Unpaired Translation), FastCUT, trained with the meta-domain paradigm, allowed to achieve the best classification result for the downstream task and, correspondingly, showed the highest FID on the classification dataset. CONCLUSIONS: Stain color normalization is a difficult but fundamental problem in the histopathological setting. Several measures should be considered for properly assessing normalization methods, so that they can be introduced in the clinical practice. UI2IT frameworks offer a powerful and effective way to perform the normalization process, providing realistic images with proper colorization, unlike traditional normalization methods that introduce color artifacts. By adopting the proposed meta-domain framework, the training time can be reduced, and the accuracy of downstream classifiers can be increased.


Assuntos
Neoplasias Colorretais , Corantes , Humanos , Reprodutibilidade dos Testes , Redes Neurais de Computação , Diagnóstico por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Colorretais/diagnóstico por imagem
15.
J Neural Eng ; 20(1)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36745929

RESUMO

Objective. This study aims to design and implement the first deep learning (DL) model to classify subjects in the prodromic states of Alzheimer's disease (AD) based on resting-state electroencephalographic (EEG) signals.Approach. EEG recordings of 17 healthy controls (HCs), 56 subjective cognitive decline (SCD) and 45 mild cognitive impairment (MCI) subjects were acquired at resting state. After preprocessing, we selected sections corresponding to eyes-closed condition. Five different datasets were created by extracting delta, theta, alpha, beta and delta-to-theta frequency bands using bandpass filters. To classify SCDvsMCI and HCvsSCDvsMCI, we propose a framework based on the transformer architecture, which uses multi-head attention to focus on the most relevant parts of the input signals. We trained and validated the model on each dataset with a leave-one-subject-out cross-validation approach, splitting the signals into 10 s epochs. Subjects were assigned to the same class as the majority of their epochs. Classification performances of the transformer were assessed for both epochs and subjects and compared with other DL models.Main results. Results showed that the delta dataset allowed our model to achieve the best performances for the discrimination of SCD and MCI, reaching an Area Under the ROC Curve (AUC) of 0.807, while the highest results for the HCvsSCDvsMCI classification were obtained on alpha and theta with a micro-AUC higher than 0.74.Significance. We demonstrated that DL approaches can support the adoption of non-invasive and economic techniques as EEG to stratify patients in the clinical population at risk for AD. This result was achieved since the attention mechanism was able to learn temporal dependencies of the signal, focusing on the most discriminative patterns, achieving state-of-the-art results by using a deep model of reduced complexity. Our results were consistent with clinical evidence that changes in brain activity are progressive when considering early stages of AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Aprendizado Profundo , Humanos , Eletroencefalografia/métodos , Doença de Alzheimer/diagnóstico , Disfunção Cognitiva/diagnóstico
16.
PLoS Comput Biol ; 19(2): e1010846, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780436

RESUMO

In Italian universities, bioinformatics courses are increasingly being incorporated into different study paths. However, the content of bioinformatics courses is usually selected by the professor teaching the course, in the absence of national guidelines that identify the minimum indispensable knowledge in bioinformatics that undergraduate students from different scientific fields should achieve. The Training&Teaching group of the Bioinformatics Italian Society (BITS) proposed to university professors a survey aimed at portraying the current situation of bioinformatics courses within undergraduate curricula in Italy (i.e., bioinformatics courses activated within both bachelor's and master's degrees). Furthermore, the Training&Teaching group took a cue from the survey outcomes to develop recommendations for the design and the inclusion of bioinformatics courses in academic curricula. Here, we present the outcomes of the survey, as well as the BITS recommendations, with the hope that they may support BITS members in identifying learning outcomes and selecting content for their bioinformatics courses. As we share our effort with the broader international community involved in teaching bioinformatics at academic level, we seek feedback and thoughts on our proposal and hope to start a fruitful debate on the topic, including how to better fulfill the real bioinformatics knowledge needs of the research and the labor market at both the national and international level.


Assuntos
Currículo , Estudantes , Humanos , Itália , Inquéritos e Questionários , Aprendizagem
17.
Bioengineering (Basel) ; 9(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135021

RESUMO

Nuclei identification is a fundamental task in many areas of biomedical image analysis related to computational pathology applications. Nowadays, deep learning is the primary approach by which to segment the nuclei, but accuracy is closely linked to the amount of histological ground truth data for training. In addition, it is known that most of the hematoxylin and eosin (H&E)-stained microscopy nuclei images contain complex and irregular visual characteristics. Moreover, conventional semantic segmentation architectures grounded on convolutional neural networks (CNNs) are unable to recognize distinct overlapping and clustered nuclei. To overcome these problems, we present an innovative method based on gradient-weighted class activation mapping (Grad-CAM) saliency maps for image segmentation. The proposed solution is comprised of two steps. The first is the semantic segmentation obtained by the use of a CNN; then, the detection step is based on the calculation of local maxima of the Grad-CAM analysis evaluated on the nucleus class, allowing us to determine the positions of the nuclei centroids. This approach, which we denote as NDG-CAM, has performance in line with state-of-the-art methods, especially in isolating the different nuclei instances, and can be generalized for different organs and tissues. Experimental results demonstrated a precision of 0.833, recall of 0.815 and a Dice coefficient of 0.824 on the publicly available validation set. When used in combined mode with instance segmentation architectures such as Mask R-CNN, the method manages to surpass state-of-the-art approaches, with precision of 0.838, recall of 0.934 and a Dice coefficient of 0.884. Furthermore, performance on the external, locally collected validation set, with a Dice coefficient of 0.914 for the combined model, shows the generalization capability of the implemented pipeline, which has the ability to detect nuclei not only related to tumor or normal epithelium but also to other cytotypes.

18.
Bioengineering (Basel) ; 9(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892756

RESUMO

In prostate cancer, fusion biopsy, which couples magnetic resonance imaging (MRI) with transrectal ultrasound (TRUS), poses the basis for targeted biopsy by allowing the comparison of information coming from both imaging modalities at the same time. Compared with the standard clinical procedure, it provides a less invasive option for the patients and increases the likelihood of sampling cancerous tissue regions for the subsequent pathology analyses. As a prerequisite to image fusion, segmentation must be achieved from both MRI and TRUS domains. The automatic contour delineation of the prostate gland from TRUS images is a challenging task due to several factors including unclear boundaries, speckle noise, and the variety of prostate anatomical shapes. Automatic methodologies, such as those based on deep learning, require a huge quantity of training data to achieve satisfactory results. In this paper, the authors propose a novel optimization formulation to find the best superellipse, a deformable model that can accurately represent the prostate shape. The advantage of the proposed approach is that it does not require extensive annotations, and can be used independently of the specific transducer employed during prostate biopsies. Moreover, in order to show the clinical applicability of the method, this study also presents a module for the automatic segmentation of the prostate gland from MRI, exploiting the nnU-Net framework. Lastly, segmented contours from both imaging domains are fused with a customized registration algorithm in order to create a tool that can help the physician to perform a targeted prostate biopsy by interacting with the graphical user interface.

19.
Sci Rep ; 12(1): 4707, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304530

RESUMO

Scientific evidence points to a shared neural representation between performing and observing an action. The action observation notoriously determines a modulation of the observer's sensorimotor system, a phenomenon called Motor Resonance (MR). Fibromyalgia (FM) patients suffer from a condition characterized by generalized musculoskeletal pain in which even simple movement can exacerbate their symptoms. Maladaptive functioning of the primary motor cortex is a common finding in patients with chronic pain. Activation of the motor cortex is known to induce an analgesic effect in patients with chronic pain. In this exploratory study, we intend to verify if the mere observation of a movement could elicit activation of the motor cortical areas in patients with FM. Therefore, the purpose of this study was to examine the presence of MR in patients affected by fibromyalgia. We adopted a behavioral paradigm known for detecting the presence of MR and a neurophysiological experiment. Participants watched videos showing gripping movements towards a graspable or an ungraspable object, respectively, and were asked to press a button the instant the agent touched the object (Time-to-contact detection session). In a different experimental session, participants were only requested to observe and pay attention to the videos (Observation-only session). During each experimental session, the participants' cerebral hemodynamic activity was recorded using the functional Near-Infrared Spectroscopy method. The behavioral task analysis revealed the presence of MR in both FM patients and healthy controls. Moreover, neurophysiological findings suggested that the observation of movement during the Observation-only session provoked activation and modulation of the cortical motor networks of FM patients. These results could represent evidence of the possible beneficial effects of movement observation in restarting motor activation, notoriously reduced, in FM patients.


Assuntos
Dor Crônica , Fibromialgia , Córtex Motor , Humanos , Córtex Motor/fisiologia , Movimento/fisiologia
20.
J Clin Med ; 11(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35207371

RESUMO

BACKGROUND: Retinal microvasculature assessment at capillary level may potentially aid the evaluation of early microvascular changes due to hypertension. We aimed to investigate associations between the measures obtained using optical coherence tomography (OCT) and OCT-angiography (OCT-A) and hypertension, in a southern Italian older population. METHODS: We performed a cross-sectional analysis from a population-based study on 731 participants aged 65 years+ subdivided into two groups according to the presence or absence of blood hypertension without hypertensive retinopathy. The average thickness of the ganglion cell complex (GCC) and the retinal nerve fiber layer (RNFL) were measured. The foveal avascular zone area, vascular density (VD) at the macular site and of the optic nerve head (ONH) and radial peripapillary capillary (RPC) plexi were evaluated. Logistic regression was applied to assess the association of ocular measurements with hypertension. RESULTS: GCC thickness was inversely associated with hypertension (odds ratio (OR): 0.98, 95% confidence interval (CI): 0.97-1). A rarefaction of VD of the ONH plexus at the inferior temporal sector (OR: 0.95, 95% CI: 0.91-0.99) and, conversely, a higher VD of the ONH and RPC plexi inside optic disc (OR: 1.07, 95% CI: 1.04-1.10; OR: 1.04, 95% CI: 1.02-1.06, respectively) were significantly associated with hypertension. CONCLUSION: A neuroretinal thinning involving GCC and a change in capillary density at the peripapillary network were related to the hypertension in older patients without hypertensive retinopathy. Assessing peripapillary retinal microvasculature using OCT-A may be a useful non-invasive approach to detect early microvascular changes due to hypertension.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA