Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12020, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835854

RESUMO

The frequent use of insecticides to manage soybean aphids, Aphis glycines (Hemiptera: Aphididae), in the United States has contributed to field-evolved resistance. Pyrethroid-resistant aphids have nonsynonymous mutations in the voltage-gated sodium channel (vgsc). We identified a leucine to phenylalanine mutation at position 1014 (L1014F) and a methionine to isoleucine mutation (M918I) of the A. glycines vgsc, both suspected of conferring knockdown resistance (kdr) to lambda-cyhalothrin. We developed molecular markers to identify these mutations in insecticide-resistant aphids. We determined that A. glycines which survived exposure to a diagnostic concentration of lambda-cyhalothrin and bifenthrin via glass-vial bioassays had these mutations, and showed significant changes in the resistance allele frequency between samples collected before and after field application of lambda-cyhalothrin. Thus, a strong association was revealed between aphids with L1014F and M918I vgsc mutations and survival following exposure to pyrethroids. Specifically, the highest survival was observed for aphids with the kdr (L1014F) and heterozygote super-kdr (L1014F + M918I) genotypes following laboratory bioassays and in-field application of lambda-cyhalothrin. These genetic markers could be used as a diagnostic tool for detecting insecticide-resistant A. glycines and monitoring the geographic distribution of pyrethroid resistance. We discuss how generating these types of data could improve our efforts to mitigate the effects of pyrethroid resistance on crop production.


Assuntos
Afídeos , Inseticidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Afídeos/genética , Marcadores Genéticos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mutação , Fenótipo , Piretrinas/farmacologia , Glycine max , Canais de Sódio Disparados por Voltagem/genética
2.
J Econ Entomol ; 113(4): 1591-1608, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32515787

RESUMO

Soybean production in Brazil has been markedly affected by invasions of non-native arthropod species that feed on the crop, severely impacting biodiversity, food security, health, and economic development. Data on soybean production losses and increase in insecticide usage over the last two decades have not been explored in association with past invasion events, and the dynamics underlying the recent blitz of invasive species into Brazil remain largely unclear. We provide a review of arthropod invasions in the Brazilian soybean agroecosystem since 1990, indicating that the introductions of Bemisia tabaci (Gennadius) MEAM1 (Hemiptera: Aleyrodidae), Tetranychus urticae (Koch) (Acari: Tetranychidae), and Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) are likely correlated with periods of increase in insecticide usage for soybean production. Using these three cases as examples, we review factors that could lead to increased likelihood of future invasions by particular pests, outlining four possible criteria to evaluate potential invasiveness of non-native arthropods: likelihood of entry, likelihood of establishment, biological features of the species, and availability of control measures. Spodoptera litura (F.) (Lepidoptera: Noctuidae) and Aphis glycines (Matsumura) (Hemiptera: Sternorrhynca) are examples of highly damaging soybean pests, related to one or more of these factors, that could be introduced into Brazil over the next years and which could lead to problematic scenarios. Melanagromyza sojae (Zehnter) (Diptera: Agromyzidae) also meets these criteria and has successfully invaded and colonized Brazilian soybean fields in recent years. Our review identifies current issues within soybean pest management in Brazil and highlights the need to adopt management measures to offset future costs and minimize lost revenue.


Assuntos
Afídeos , Inseticidas , Mariposas , Animais , Brasil , Glycine max
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA