Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Virology ; 587: 109860, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572517

RESUMO

Highly pathogenic avian influenza viruses (HPAIVs) of the A/goose/Guangdong/1/1996 lineage H5 clade 2.3.4.4b continue to have a devastating effect on domestic and wild birds. Full genome sequence analyses using 1369 H5N1 HPAIVs detected in the United States (U.S.) in wild birds, commercial poultry, and backyard flocks from December 2021 to April 2022, showed three phylogenetically distinct H5N1 virus introductions in the U.S. by wild birds. Unreassorted Eurasian genotypes A1 and A2 entered the Northeast Atlantic states, whereas a genetically distinct A3 genotype was detected in Alaska. The A1 genotype spread westward via wild bird migration and reassorted with North American wild bird avian influenza viruses. Reassortments of up to five internal genes generated a total of 21 distinct clusters; of these, six genotypes represented 92% of the HPAIVs examined. By phylodynamic analyses, most detections in domestic birds were shown to be point-source transmissions from wild birds, with limited farm-to-farm spread.

2.
Nat Commun ; 14(1): 5105, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640694

RESUMO

The zoonotic origin of the COVID-19 pandemic virus highlights the need to fill the vast gaps in our knowledge of SARS-CoV-2 ecology and evolution in non-human hosts. Here, we detected that SARS-CoV-2 was introduced from humans into white-tailed deer more than 30 times in Ohio, USA during November 2021-March 2022. Subsequently, deer-to-deer transmission persisted for 2-8 months, disseminating across hundreds of kilometers. Newly developed Bayesian phylogenetic methods quantified how SARS-CoV-2 evolution is not only three-times faster in white-tailed deer compared to the rate observed in humans but also driven by different mutational biases and selection pressures. The long-term effect of this accelerated evolutionary rate remains to be seen as no critical phenotypic changes were observed in our animal models using white-tailed deer origin viruses. Still, SARS-CoV-2 has transmitted in white-tailed deer populations for a relatively short duration, and the risk of future changes may have serious consequences for humans and livestock.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/genética , COVID-19/veterinária , Teorema de Bayes , Pandemias , Filogenia
3.
Ecol Appl ; 33(7): e2906, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37522765

RESUMO

Influenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low-pathogenicity influenza viruses that ultimately cause high-pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored. Nevertheless, understanding these dynamics, particularly for the agriculturally significant H5 and H7 subtypes, is important for mitigating the risk of outbreaks in domestic poultry farms. Here, using an expansive surveillance database, we take a large-scale look at the spatial, temporal, and taxonomic drivers in the prevalence of these two subtypes among influenza A-positive wild waterfowl. We document spatiotemporal trends that are consistent with past work, particularly an uptick in H5 viruses in late autumn and H7 viruses in spring. Interestingly, despite large species differences in temporal trends in overall influenza A virus prevalence, we document only modest differences in the relative abundance of these two subtypes and little, if any, temporal differences among species. As such, it appears that differences in species' phenology, physiology, and behaviors that influence overall susceptibility to influenza A viruses play a much lesser role in relative susceptibility to different subtypes. Instead, species are likely to freely pass viruses among each other regardless of subtype. Importantly, despite the similarities among species documented here, individual species still may play important roles in moving viruses across large geographic areas or sustaining local outbreaks through their different migratory behaviors.


Assuntos
Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Influenza Aviária/epidemiologia , Aves , Aves Domésticas , Animais Selvagens
4.
Transbound Emerg Dis ; 69(5): e3111-e3127, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35881004

RESUMO

African swine fever virus (ASFv) is a virulent pathogen that threatens domestic swine industries globally and persists in wild boar populations in some countries. Persistence in wild boar can challenge elimination and prevent disease-free status, making it necessary to address wild swine in proactive response plans. In the United States, invasive wild pigs are abundant and found across a wide range of ecological conditions that could drive different epidemiological dynamics among populations. Information on the size of the control areas required to rapidly eliminate the ASFv in wild pigs and how this area should change with management constraints and local ecology is needed to optimize response planning. We developed a spatially explicit disease transmission model contrasting wild pig movement and contact ecology in two ecosystems in Southeastern United States. We simulated ASFv spread and determined the optimal response area (reported as the radius of a circle) for eliminating ASFv rapidly over a range of detection times (when ASFv was detected relative to the true date of introduction), culling capacities (proportion of wild pigs in the culling zone removed weekly) and wild pig densities. Large radii for response areas (14 km) were needed under most conditions but could be shortened with early detection (≤ 8 weeks) and high culling capacities (≥ 15% weekly). Under most conditions, the ASFv was eliminated in less than 22 weeks using optimal control radii, although ecological conditions with high rates of wild pig movement required higher culling capacities (≥ 10% weekly) for elimination within 1 year. The results highlight the importance of adjusting response plans based on local ecology and show that wild pig movement is a better predictor of the optimal response area than the number of ASFv cases early in the outbreak trajectory. Our framework provides a tool for determining optimal control plans in different areas, guiding expectations of response impacts, and planning resources needed for rapid elimination.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Febre Suína Africana/epidemiologia , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/fisiologia , Animais , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Ecossistema , Sus scrofa , Suínos
5.
Sci Rep ; 12(1): 13083, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906292

RESUMO

Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper Midwest during early fall, though further study is needed. We documented elevated prevalence in late winter and early spring, particularly in the Mississippi Alluvial Valley. Our results suggest that spatiotemporal variation in prevalence outside autumn staging areas may also represent a dynamic parameter to be considered in IAV ecology and associated risks.


Assuntos
Vírus da Influenza A , Influenza Aviária , Migração Animal , Animais , Animais Selvagens , Patos , Humanos , Influenza Aviária/epidemiologia , Prevalência , Estados Unidos/epidemiologia
6.
Transbound Emerg Dis ; 69(5): e2329-e2340, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35490290

RESUMO

Animal disease surveillance is an important component of the national veterinary infrastructure to protect animal agriculture and facilitates identification of foreign animal disease (FAD) introduction. Once introduced, pathogens shared among domestic and wild animals are especially challenging to manage due to the complex ecology of spillover and spillback. Thus, early identification of FAD in wildlife is critical to minimize outbreak severity and potential impacts on animal agriculture as well as potential impacts on wildlife and biodiversity. As a result, national surveillance and monitoring programs that include wildlife are becoming increasingly common. Designing surveillance systems in wildlife or, more importantly, at the interface of wildlife and domestic animals, is especially challenging because of the frequent lack of ecological and epidemiological data for wildlife species and technical challenges associated with a lack of non-invasive methodologies. To meet the increasing need for targeted FAD surveillance and to address gaps in existing wildlife surveillance systems, we developed an adaptive risk-based targeted surveillance approach that accounts for risks in source and recipient host populations. The approach is flexible, accounts for changing disease risks through time, can be scaled from local to national extents and permits the inclusion of quantitative data or when information is limited to expert opinion. We apply this adaptive risk-based surveillance framework to prioritize areas for surveillance in wild pigs in the United States with the objective of early detection of three diseases: classical swine fever, African swine fever and foot-and-mouth disease. We discuss our surveillance framework, its application to wild pigs and discuss the utility of this framework for surveillance of other host species and diseases.


Assuntos
Febre Suína Africana , Febre Aftosa , Doenças dos Suínos , Animais , Animais Selvagens , Flavina-Adenina Dinucleotídeo , Febre Aftosa/epidemiologia , Gado , Sus scrofa , Suínos , Doenças dos Suínos/epidemiologia , Estados Unidos
7.
Emerg Infect Dis ; 28(5): 1006-1011, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35302933

RESUMO

We detected Eurasian-origin highly pathogenic avian influenza A(H5N1) virus belonging to the Gs/GD lineage, clade 2.3.4.4b, in wild waterfowl in 2 Atlantic coastal states in the United States. Bird banding data showed widespread movement of waterfowl within the Atlantic Flyway and between neighboring flyways and northern breeding grounds.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Animais Selvagens , Aves , Humanos , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia , Estados Unidos/epidemiologia
8.
Transbound Emerg Dis ; 69(2): 742-752, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33621417

RESUMO

Some snow geese (Anser caerulescens) migrate between Eurasia and North America and exhibit high seroprevalence for influenza A viruses (IAVs). Hence, these birds might be expected to play a role in intercontinental dispersal of IAVs. Our objective in this manuscript was to characterize basic incidence and infection characteristics for snow geese to assess whether these birds are likely to significantly contribute to circulation of IAVs. Thus, we 1) estimated snow goose infection prevalence by summarizing > 5,000 snow goose surveillance records, 2) experimentally infected snow geese with a low pathogenic IAV (H4N6) to assess susceptibility and infection dynamics and 3) characterized long-term antibody kinetics. Infection prevalence based on surveillance data for snow geese was 7.88%, higher than the infection rates found in other common North American goose species. In the experimental infection study, only 4 of 7 snow geese shed viral RNA. Shedding in infected birds peaked at moderate levels (mean peak 102.62 EID50 equivalents/mL) and was exclusively associated with the oral cavity. Serological testing across a year post-exposure showed all inoculated birds seroconverted regardless of detectable shedding. Antibody levels peaked at 10 days post-exposure and then waned to undetectable levels by 6 months. In sum, while broad-scale surveillance results showed comparatively high infection prevalence, the experimental infection study showed only moderate susceptibility and shedding. Consequently, additional work is needed to assess whether snow geese might exhibit higher levels of susceptibility and shedding rates when exposed to other IAV strains.


Assuntos
Vírus da Influenza A , Influenza Aviária , Animais , Anticorpos , Gansos , Influenza Aviária/epidemiologia , Estudos Soroepidemiológicos
9.
Glob Chang Biol ; 28(3): 753-769, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34796590

RESUMO

After several pandemics over the last two millennia, the wildlife reservoirs of plague (Yersinia pestis) now persist around the world, including in the western United States. Routine surveillance in this region has generated comprehensive records of human cases and animal seroprevalence, creating a unique opportunity to test how plague reservoirs are responding to environmental change. Here, we test whether animal and human data suggest that plague reservoirs and spillover risk have shifted since 1950. To do so, we develop a new method for detecting the impact of climate change on infectious disease distributions, capable of disentangling long-term trends (signal) and interannual variation in both weather and sampling (noise). We find that plague foci are associated with high-elevation rodent communities, and soil biochemistry may play a key role in the geography of long-term persistence. In addition, we find that human cases are concentrated only in a small subset of endemic areas, and that spillover events are driven by higher rodent species richness (the amplification hypothesis) and climatic anomalies (the trophic cascade hypothesis). Using our detection model, we find that due to the changing climate, rodent communities at high elevations have become more conducive to the establishment of plague reservoirs-with suitability increasing up to 40% in some places-and that spillover risk to humans at mid-elevations has increased as well, although more gradually. These results highlight opportunities for deeper investigation of plague ecology, the value of integrative surveillance for infectious disease geography, and the need for further research into ongoing climate change impacts.


Assuntos
Peste , Yersinia pestis , Animais , Mudança Climática , Peste/epidemiologia , Roedores , Estudos Soroepidemiológicos , Estados Unidos/epidemiologia
10.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34732584

RESUMO

Widespread human SARS-CoV-2 infections combined with human-wildlife interactions create the potential for reverse zoonosis from humans to wildlife. We targeted white-tailed deer (Odocoileus virginianus) for serosurveillance based on evidence these deer have angiotensin-converting enzyme 2 receptors with high affinity for SARS-CoV-2, are permissive to infection, exhibit sustained viral shedding, can transmit to conspecifics, exhibit social behavior, and can be abundant near urban centers. We evaluated 624 prepandemic and postpandemic serum samples from wild deer from four US states for SARS-CoV-2 exposure. Antibodies were detected in 152 samples (40%) from 2021 using a surrogate virus neutralization test. A subset of samples tested with a SARS-CoV-2 virus neutralization test showed high concordance between tests. These data suggest white-tailed deer in the populations assessed have been exposed to SARS-CoV-2.


Assuntos
Cervos/virologia , SARS-CoV-2/isolamento & purificação , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Great Lakes Region/epidemiologia , Estudos Soroepidemiológicos
11.
Vector Borne Zoonotic Dis ; 21(9): 667-674, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34191632

RESUMO

Plague is caused by a bacterial pathogen (Yersinia pestis) that can infect a wide range of mammal species, but its presence in wildlife is often underappreciated. Using a large-scale data set (n = 44,857) that details the extent of Y. pestis exposure in wildlife, we document exposure in 18 wildlife species, including coyotes (Canis latrans), bobcats (Lynx rufus), and black bears (Ursus americanus). Evidence of plague activity is widespread, with seropositive animals detected in every western state in the contiguous United States. Pathogen monitoring systems in wildlife that are both large scale and long-term are rare, yet they open the door for analyses on potential shifts in distribution that have occurred over time because of climate or land use changes. The data generated by these long-term monitoring programs, combined with recent advances in our understanding of pathogen ecology, offer a clearer picture of zoonotic pathogens and the risks they pose.


Assuntos
Coiotes , Peste , Yersinia pestis , Animais , Animais Selvagens , Peste/epidemiologia , Peste/veterinária , Estados Unidos/epidemiologia
12.
Transbound Emerg Dis ; 68(2): 605-614, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32639639

RESUMO

Haemaphysalis longicornis, the Asian longhorned tick (ALT), is native to eastern Asia, but it has become invasive in several countries, including Australia, New Zealand and recently in the eastern United States (US). To identify wild mammal and avian host species in the US, we conducted active wildlife surveillance in two states with known ALT infestations (Virginia and New Jersey). In addition, we conducted environmental surveys in both states. These surveillance efforts resulted in detection of 51 ALT-infested individuals from seven wildlife species, including raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), red fox (Vulpes vulpes), woodchuck (Marmota monax), eastern cottontail (Sylvilagus floridanus), striped skunk (Mephitis mephitis) and white-tailed deer (Odocoileus virginianus). We found ALT in the environment in both states and also collected three native tick species (Amblyomma americanum, Dermacentor variablis and Ixodes scapularis) that are vectors of pathogens of public health and veterinary importance. This study provides important specific information on the wildlife host range of ALT in the US.


Assuntos
Ixodidae/fisiologia , Mamíferos , Infestações por Carrapato/veterinária , Animais , Animais Selvagens , Ixodidae/classificação , New Jersey , Infestações por Carrapato/parasitologia , Virginia
13.
Sci Total Environ ; 733: 139358, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32416535

RESUMO

There is evidence that the current outbreak of the novel coronavirus SARS-CoV-2, which causes COVID-19, is of animal origin. As with a number of zoonotic pathogens, there is a risk of spillover into novel hosts. Here, we propose a hypothesized conceptual model that illustrates the mechanism whereby the SARS-CoV-2 could spillover from infected humans to naive wildlife hosts in North America. This proposed model is premised on transmission of SARS-CoV-2 from human feces through municipal waste water treatment plants into the natural aquatic environment where potential wildlife hosts become infected. We use the existing literature on human coronaviruses, including SARS CoV, to support the potential pathways and mechanisms in the conceptual model. Although we focus on North America, our conceptual model could apply to other parts of the globe as well.


Assuntos
Animais Selvagens/virologia , Betacoronavirus , Animais , COVID-19 , Infecções por Coronavirus , Fezes/virologia , Humanos , Modelos Biológicos , América do Norte , Pandemias , Pneumonia Viral , SARS-CoV-2 , Eliminação de Resíduos Líquidos , Águas Residuárias/virologia , Poluentes da Água
14.
J Microbiol Methods ; 172: 105892, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32184162

RESUMO

A method was developed and validated for the detection of colistin-resistant Escherichia coli containing mcr-1 in the feces of feral swine. Following optimization of an enrichment method using EC broth supplemented with colistin (1 µg/mL) and vancomycin (8 µg/mL), aliquots derived from 100 feral swine fecal samples were spiked with of one of five different mcr-1 positive E. coli strains (between 100 and 104 CFU/g), for a total of 1110 samples tested. Enrichments were then screened using a simple boil-prep and a previously developed real-time PCR assay for mcr-1 detection. The sensitivity of the method was determined in swine feces, with mcr-1 E. coli inocula of 0.1-9.99 CFU/g (n = 340), 10-49.99 CFU/g (n = 170), 50-99 CFU/g (n = 255), 100-149 CFU/g (n = 60), and 200-2200 CFU/g (n = 175), which were detected with 32%, 72%, 88%, 95%, and 98% accuracy, respectively. Uninoculated controls (n = 100) were negative for mcr-1 following enrichment.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Fezes/microbiologia , Animais , Antibacterianos/farmacologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Programas de Rastreamento , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase em Tempo Real , Suínos , Doenças dos Suínos/microbiologia
15.
Vet Rec ; 184(24): 741, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31023873

RESUMO

Foot-and-mouth disease (FMD) is caused by foot-and-mouth disease virus (FMDV) which affects domestic and wild cloven-hoofed species. The FMD-free status of the USA and the tremendous economic impact of a virus incursion motivated the development of this evaluation of the potential role of wildlife in the event of a virus introduction. Additionally, this manuscript contains a summary of US vulnerabilities for viral incursion and persistence which focuses specifically on the possible role of wildlife. The legal movement of susceptible live animals, animal products, by-products and animal feed containing animal products pose a risk of virus introduction and spread. Additionally, the illegal movement of FMD-susceptible animals and their products and an act of bioterrorism present additional routes where FMDV could be introduced to the USA. Therefore, robust surveillance and rapid diagnostics in the face of a possible introduction are essential for detecting and controlling FMD as quickly as possible. Wildlife species and feral pigs present an added complexity in the case of FMDV introduction as they are typically not closely monitored or managed and there are significant logistical concerns pertaining to disease surveillance and control in these populations. Recommendations highlight the need to address existing knowledge gaps relative to the potential role of wildlife in FMDV introduction events.


Assuntos
Animais Selvagens/virologia , Vírus da Febre Aftosa/isolamento & purificação , Febre Aftosa/epidemiologia , Animais , Estados Unidos/epidemiologia
16.
Transbound Emerg Dis ; 66(2): 705-714, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30415502

RESUMO

Using data on waterfowl band recoveries, we identified spatially explicit hotspots of concentrated waterfowl movement to predict occurrence and spatial spread of a novel influenza A virus (clade 2.3.4.4) introduced from Asia by waterfowl from an initial outbreak in North America in November 2014. In response to the outbreak, the hotspots of waterfowl movement were used to help guide sampling for clade 2.3.4.4 viruses in waterfowl as an early warning for the US poultry industry during the outbreak . After surveillance sampling of waterfowl, we tested whether there was greater detection of clade 2.3.4.4 viruses inside hotspots. We found that hotspots defined using kernel density estimates of waterfowl band recoveries worked well in predicting areas with higher prevalence of the viruses in waterfowl. This approach exemplifies the value of ecological knowledge in predicting risk to agricultural security.


Assuntos
Anseriformes , Surtos de Doenças/veterinária , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Doenças das Aves Domésticas/epidemiologia , Animais , Ásia , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/transmissão , Aves Domésticas , Doenças das Aves Domésticas/transmissão , Prevalência , Estados Unidos/epidemiologia
17.
Emerg Infect Dis ; 24(7): 1390-1392, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912697

RESUMO

Porcine epidemic diarrhea virus, a pathogen first detected in US domestic swine in 2013, has rapidly spilled over into feral swine populations. A better understanding of the factors associated with pathogen emergence is needed to better manage, and ultimately prevent, future spillover events from domestic to nondomestic animals.


Assuntos
Infecções por Coronavirus/veterinária , Coronavirus , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/virologia , Animais , Estudos Soroepidemiológicos , Suínos , Estados Unidos/epidemiologia
18.
Sci Rep ; 8(1): 8168, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29802369

RESUMO

Anticoagulant rodenticides have been implicated as a potential inciting factor in the development of mange in wild felids, but a causative association between anticoagulant rodenticide exposure and immune suppression has not been established. Specific-pathogen-free domestic cats were exposed to brodifacoum over a 6-week period to determine whether chronic, low-level exposure altered the feline immune response. Cats were vaccinated with irrelevant antigens at different points during the course of the experiment to assess recall and direct immune responses. Measures of immune response included delayed-type hypersensitivity tests and cell proliferation assays. IgE and antigen-specific antibodies were quantified via ELISA assays, and cytokine induction following exposure to vaccine antigens was also analyzed. While cats had marked levels of brodifacoum present in blood during the study, no cats developed coagulopathies or hematologic abnormalities. Brodifacoum-exposed cats had transient, statistically significant decreases in the production of certain cytokines, but all other measures of immune function remained unaffected throughout the study period. This study indicates that cats may be more resistant to clinical effects of brodifacoum exposure than other species and suggests that the gross impacts of environmentally realistic brodifacoum exposure on humoral and cell-mediated immunity against foreign antigen exposures in domestic cats are minimal.


Assuntos
4-Hidroxicumarinas/farmacologia , Imunidade/efeitos dos fármacos , Rodenticidas/farmacologia , Animais , Gatos , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Saúde , Hipersensibilidade Tardia/imunologia , Fatores de Tempo
19.
J Clin Microbiol ; 56(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29695520

RESUMO

Yersinia pestis is the causative agent of plague and is considered a category A priority pathogen due to its potential for high transmissibility and the significant morbidity and mortality it causes in humans. Y. pestis is endemic to the western United States and much of the world, necessitating programs to monitor for this pathogen on the landscape. Elevated human risk of plague infection has been spatially correlated with spikes in seropositive wildlife numbers, particularly rodent-eating carnivores, which are frequently in contact with the enzootic hosts and the associated arthropod vectors of Y. pestis In this study, we describe a semiautomated bead-based flow cytometric assay developed for plague monitoring in wildlife called the F1 Luminex plague assay (F1-LPA). Based upon Luminex/Bio-Plex technology, the F1-LPA targets serological responses to the F1 capsular antigen of Y. pestis and was optimized to analyze antibodies eluted from wildlife blood samples preserved on Nobuto filter paper strips. In comparative evaluations with passive hemagglutination, the gold standard tool for wildlife plague serodiagnosis, the F1-LPA demonstrated as much as 64× improvement in analytical sensitivity for F1-specific IgG detection and allowed for unambiguous classification of IgG status. The functionality of the F1-LPA was demonstrated for coyotes and other canids, which are the primary sentinels in wildlife plague monitoring, as well as felids and raccoons. Additionally, assay formats that do not require species-specific immunological reagents, which are not routinely available for several wildlife species used in plague monitoring, were determined to be functional in the F1-LPA.


Assuntos
Animais Selvagens , Monitoramento Epidemiológico/veterinária , Citometria de Fluxo/métodos , Peste/veterinária , Yersinia pestis , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Testes de Inibição da Hemaglutinação , Testes de Hemaglutinação , Imunoensaio , Peste/sangue , Peste/diagnóstico , Peste/microbiologia , Reprodutibilidade dos Testes , Yersinia pestis/imunologia
20.
Front Vet Sci ; 5: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556501

RESUMO

Classical swine fever (CSF) is caused by CSF virus (CSFV) which can be the source of substantial morbidity and mortality events in affected swine. The disease can take one of several forms (acute, chronic, or prenatal) and depending on the virulence of the inoculating strain may result in a lethal infection irrespective of the form acquired. Because of the disease-free status of the United States and the high cost of a viral incursion, a summary of US vulnerabilities for viral introduction and persistence is provided. The legal importation of live animals as well as animal products, byproducts, and animal feed serve as a potential route of viral introduction. Current import regulations are described as are mitigation strategies that are commonly utilized to prevent pathogens, including CSFV, from entering the US. The illegal movement of suids and their products as well as an event of bioterrorism are both feasible routes of viral introduction but are difficult to restrict or regulate. Ultimately, recommendations are made for data that would be useful in the event of a viral incursion. Population and density mapping for feral swine across the United States would be valuable in the event of a viral introduction or spillover; density data could further contribute to understanding the risk of infection in domestic swine. Additionally, ecological and behavioral studies, including those that evaluate the effects of anthropogenic food sources that support feral swine densities far above the carrying capacity would provide invaluable insight to our understanding of how human interventions affect feral swine populations. Further analyses to determine the sampling strategies necessary to detect low levels of antibody prevalence in feral swine would also be valuable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA