Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 57(8): 3776-3797, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38681059

RESUMO

In this work, we report the successful synthesis of 17 unique compositions of a poly(ionic liquid) (PIL) ABC triblock terpolymer, poly(S-b-VBMIm-TFSI-b-HA), where S is styrene, VBMIm-TFSI is vinylbenzyl methylimidazolium bis(trifluoromethanesulfonyl)imide, and HA is hexyl acrylate. Nine distinct morphologies were observed, including two-phase and three-phase disordered microphase separated (D2 and D3), two-phase hexagonally packed cylinders (C2), core-shell hexagonally packed cylinders (CCS), three-phase lamellae (L3), two-phase lamellae (L2), core-shell double gyroid (Q230), spheres-in-lamellae (LSI), and a three-phase hexagonal superlattice of cylinders (CSL). The LSI morphology was unambiguously confirmed using small-angle X-ray scattering and transmission electron microscopy. Morphology type significantly impacted the ion conductivity of the PIL ABC triblock terpolymers, where remarkable changes in morphology factor (normalized ion conductivity) were observed with only small changes in the conducting volume fraction, i.e., PIL block composition. An exceptionally high morphology factor of 2.0 was observed from the PIL ABC triblock terpolymer with a hexagonal superlattice morphology due to the three-dimensional narrow, continuous PIL nanodomains that accelerate ion conduction. Overall, this work demonstrates the first systematic study of highly frustrated single-ion conducting ABC triblock terpolymers with a diverse set of morphologies and exceptionally high morphology factors, enabling the exploration of transport-morphology relationships to guide the future design of highly conductive polymer electrolytes.

2.
Soft Matter ; 18(5): 1019-1033, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35018933

RESUMO

Nanocomposites integrate functional nanofillers into viscoelastic matrices for electronics, lightweight structural materials, and tissue engineering. Herein, the effect of methacrylate-functionalized (MA-SiO2) and vinyl-functionalized (V-SiO2) silica nanoparticles on the thermal, mechanical, physical, and morphological characteristics of poly(ethylene glycol) (PEG) nanocomposites was investigated. The gel fraction of V-SiO2 composites decreases upon addition of 3.8 wt% but increases with further addition (>7.4 wt%) until it reaches a plateau at 10.7 wt%. The MA-SiO2 induced no significant changes in gel fraction and both V-SiO2 and MA-SiO2 nanoparticles had a negligible impact on the nanocomposite glass transition temperature and water absorption. The Young's modulus and ultimate compressive stress increased with increasing nanoparticle concentration for both nanoparticles. Due to the higher crosslink density, MA-SiO2 composites reached a maximum mechanical stress at a concentration of 7.4 wt%, while V-SiO2 composites reached a maximum at a concentration of 10.7 wt%. Scanning electron microscopy, transmission electron microscopy, and small-angle X-ray scattering revealed a bimodal size distribution for V-SiO2 and a monomodal size distribution for MA-SiO2. Although aggregates were observed for both nanoparticle surface treatments, V-SiO2 dispersion was poor while MA-SiO2 were generally well-dispersed. These findings lay the framework for silica nanofillers in PEG-based nanocomposites for advanced manufacturing applications.

3.
ACS Macro Lett ; 7(7): 846-851, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35650758

RESUMO

Diol-functionalized trisaminocyclopropenium (TACP) carbocations were used as chain extenders in a two-step synthesis of a segmented polyurethane. Differential scanning calorimetry demonstrated significant differences in the crystallization behavior of the poly(tetramethylene oxide) soft segment when minor changes were made to the TACP structure and when compared to a control that was chain extended with butane diol. Fourier transform infrared spectroscopy was used to characterize the different level of hydrogen bonding in the polymers and showed that the bulky, charged TACP chain extender limited hydrogen bonding interactions when compared to the control. Dynamic mechanical analysis was used to probe the thermomechanical behavior of polymers that showed that the TACP-containing polymers were much more resistant to flow at high temperatures when compared to the control. Small-angle X-ray scattering showed a phase separated morphology for all the polymers tested. Tensile testing of the TACP polyurethanes demonstrated an elastic response over a wide range of strain, followed by a significant strain hardening. These results suggest a morphology of ionic aggregates rather than hard segment physical cross-links.

4.
Soft Matter ; 12(4): 1133-44, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26575014

RESUMO

Herein, we examine the synergistic impact of both ion clustering and block copolymer morphology on ion conductivity in two polymerized ionic liquid (PIL) diblock copolymers with similar chemistries but different side alkyl spacer chain lengths (ethyl versus undecyl). When saturated in liquid water, water/ion clusters were observed only in the PIL block copolymer with longer alkyl side chains (undecyl) as evidenced by both small-angle neutron scattering and intermediate-angle X-ray scattering, i.e., water/ion clusters form within the PIL microdomain under these conditions. The resulting bromide ion conductivity in the undecyl sample was higher than the ethyl sample (14.0 mS cm(-1)versus 6.1 mS cm(-1) at 50 °C in liquid water) even though both samples had the same block copolymer morphology (lamellar) and the undecyl sample had a lower ion exchange capacity (0.9 meq g(-1)versus 1.4 meq g(-1)). No water/ion clusters were observed in either sample under high humidity or dry conditions. The resulting ion conductivity in the undecyl sample with lamellar morphology was significantly higher in the liquid water saturated state compared to the high humidity state (14.0 mS cm(-1)versus 4.2 mS cm(-1)), whereas there was no difference in ion conductivity in the ethyl sample when comparing these two states. These results show that small chemical changes to ion-containing block copolymers can induce water/ion clusters within block copolymer microdomains and this can subsequently have a significant effect on ion transport.

5.
J Am Chem Soc ; 136(38): 13381-7, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25208609

RESUMO

With the aim to achieve rapid and efficient topochemical polymerizations in the solid state, via solution-based processing of thin films, we report the integration of a diphenyldiacetylene monomer and a poly(styrene-b-acrylic acid) block copolymer template for the generation of supramolecular architectural photopolymerizable materials. This strategy takes advantage of non-covalent interactions to template a topochemical photopolymerization that yields a polydiphenyldiacetylene (PDPDA) derivative. In thin films, it was found that hierarchical self-assembly of the diacetylene monomers by microphase segregation of the block copolymer template enhances the topochemical photopolymerization, which is complete within a 20 s exposure to UV light. Moreover, UV-active cross-linkable groups were incorporated within the block copolymer template to create micropatterns of PDPDA by photolithography, in the same step as the polymerization reaction. The materials design and processing may find potential uses in the microfabrication of sensors and other important areas that benefit from solution-based processing of flexible conjugated materials.


Assuntos
Acetileno/química , Acrilatos/química , Compostos de Bifenilo/síntese química , Polimerização , Poliestirenos/química , Poli-Inos/síntese química , Compostos de Bifenilo/química , Processos Fotoquímicos , Poli-Inos/química , Raios Ultravioleta
6.
ACS Appl Mater Interfaces ; 6(16): 13330-3, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25101785

RESUMO

Anion exchange membrane fuel cells (AEMFCs) are regarded as a new generation of fuel cell technology that has the potential to overcome many obstacles of the mainstream proton exchange membrane fuel cells (PEMFCs) in cost, catalyst stability, efficiency, and system size. However, the low ionic conductivity and poor thermal stability of current anion exchange membranes (AEMs) have been the key factors limiting the performance of AEMFCs. In this study, an AEM made of styrenic diblock copolymer with a quaternary ammonium-functionalized hydrophilic block and a cross-linkable hydrophobic block and possessing bicontinuous phases of a hydrophobic network and hydrophilic conduction paths was found to have high ionic conductivity at 98 mS cm(-1) and controlled membrane swelling with water uptake at 117 wt % at 22 °C. Membrane characterizations and fuel cell tests of the new AEM were carried out together with a commercial AEM, Tokuyama A201, for comparison. The high ionic conductivity and water permeability of the new membrane reported in this study is attributed to the reduced torturosity of the ionic conduction paths, while the hydrophobic network maintains the membrane mechanical integrity, preventing excessive water uptake.

7.
ACS Macro Lett ; 3(2): 160-165, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35590497

RESUMO

Anion exchange membranes have substantial potential to be useful in methanol fuel cells due to the viability of non-noble metal electrocatalysts at high pH and increases in the oxidation rate of methanol in alkaline conditions. However, long-term stability of the cationic moiety has been an issue, and imidazoliums have recently attracted attention as candidates for stable cations. The prevailing strategy for increasing the stability of the imidazolium has involved adding sterically hindering groups at the 2 position. Surprisingly, the findings of this study show that steric hindrance is the least effective strategy for stabilizing imidazoliums. We propose that the most important stabilizing factor for an imidazolium is the ability to provide alternative, reversible deprotonation reactions with hydroxide and outline other structure-property relationships for imidazolium cations.

8.
Langmuir ; 29(6): 1995-2006, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23259866

RESUMO

We have synthesized linear ABC triblock terpolymers containing poly(1,3-cyclohexadiene), PCHD, as an end block and characterized their morphologies in the melt. Specifically, we have studied terpolymers containing polystyrene (PS), polybutadiene (PB), and polyisoprene (PI) as the other blocks. Systematically varying the ratio of 1,2- /1,4-microstructures of poly(1,3-cyclohexadiene), we have studied the effects of conformational asymmetry among the three blocks on the morphologies using transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and self-consistent field theory (SCFT) performed with PolySwift++. Our work reveals that the triblock terpolymer melts containing a high percentage of 1,2-microstructures in the PCHD block are disordered at 110 °C for all the samples, independent of sequence and volume fraction of the blocks. In contrast, the triblock terpolymer melts containing a high percentage of 1,4-microstructure form regular morphologies known from the literature. The accuracy of the SCFT calculations depends on calculating the χ parameters that quantify the repulsive interactions between different monomers. Simulations using χ values obtained from solubility parameters and group contribution methods are unable to reproduce the morphologies as seen in the experiments. However, SCFT calculations accounting for the enhancement of the χ parameter with an increase in the conformational asymmetry lead to an excellent agreement between theory and experiments. These results highlight the importance of conformational asymmetry in tuning the χ parameter and, in turn, morphologies in block copolymers.

9.
Langmuir ; 27(12): 7836-42, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21591643

RESUMO

The binding energy, density, and solubility of functionalized gold nanoparticles in a vacuum are computed using molecular dynamics simulations. Numerous parameters including surface coverage fraction, functional group (-CH(3), -OH, -NH(2)), and nanoparticle orientation are considered. The analysis includes computation of minimum interparticle binding distances and energies and an analysis of mechanisms that may contribute to changes in system potential energy. A number of interesting trends and results are observed, such as increasing binding distance with higher terminal group electronegativity and a minimum particle-particle binding energy (solubility parameter) based upon surface coverage. These results provide a fundamental understanding of ligand-coated nanoparticle interactions required for the design and processing of high-density polymer composites. The computational model and results are presented as support for these conclusions.

10.
Nature ; 472(7343): 334-7, 2011 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-21512571

RESUMO

Polymers with the ability to repair themselves after sustaining damage could extend the lifetimes of materials used in many applications. Most approaches to healable materials require heating the damaged area. Here we present metallosupramolecular polymers that can be mended through exposure to light. They consist of telechelic, rubbery, low-molecular-mass polymers with ligand end groups that are non-covalently linked through metal-ion binding. On exposure to ultraviolet light, the metal-ligand motifs are electronically excited and the absorbed energy is converted into heat. This causes temporary disengagement of the metal-ligand motifs and a concomitant reversible decrease in the polymers' molecular mass and viscosity, thereby allowing quick and efficient defect healing. Light can be applied locally to a damage site, so objects can in principle be healed under load. We anticipate that this approach to healable materials, based on supramolecular polymers and a light-heat conversion step, can be applied to a wide range of supramolecular materials that use different chemistries.

11.
Langmuir ; 22(24): 10251-7, 2006 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17107029

RESUMO

Reversible Diels-Alder chemistry was exploited to develop thermo-responsive polymer films. Here, low molecular weight poly(styrene) (PS) and poly(ethylene glycol) (PEG) were prepared with furyl and maleimido chain ends, respectively. These polymers were then tethered together to form a thiol-terminated PEG-b-PS diblock copolymer ligand via a Diels-Alder linkage and were employed to randomly disperse 10 nm diameter Au nanoparticles within a matrix of PEG. Thermal treatment caused the Diels-Alder linkages between the polymer blocks to be severed, resulting in controllable surface functionalization due to phase separation. Migration of the Au nanoparticles to the surface of the films was characterized by Rutherford backscattering spectroscopy, small-angle X-ray scattering, contact angle measurements, and atomic force microscopy.

12.
J Colloid Interface Sci ; 288(1): 114-23, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-15927569

RESUMO

Core-shell silica particles, with a diameter of 1.5 mum, containing a dye fluorescein isothiocyanate (FITC), are synthesized by the hydrolysis and condensation of tetraethylorthosilicate (TEOS). Sodium dodecyl sulfate (SDS) is added to synthesize fluorescent core particles with the diameter of approximately 1 mum. In the addition of SDS, the surface charge reduced by counterions (Na+) of the surfactant leads to a higher degree of aggregation of the primary particles and the formation of larger secondary particles. The particle growth kinetics confirms the aggregation growth model for the synthesis of monodisperse silica particles, and also shows the dependence of final particle size on colloidal stability resulting from the addition of SDS. Light and X-ray scattering data reveal that the final particles have compactly packed structures with smooth surfaces. The seeded growth technique is then used to form a silica shell layer on the fluorescent core. The added amount of water and NH4OH has significant effects on shell formation. Finally, the final core-shell silica particles are modified by chemisorption of octadecanol at the surface to be dispersed in organic solvents. Octadecyl-coated silica particles are sterically stabilized in silica index-matching solvents such as chloroform and hexadecane to directly image separate particles using confocal microscopy. In chloroform, the organophilic silica particles disperse well, whereas in hexadecane they form a volume-filling gel structure at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA