Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 666, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39020346

RESUMO

BACKGROUND: The discovery of new prognostic biomarkers following spinal cord injury (SCI) is a rapidly growing field that could help uncover the underlying pathological mechanisms of SCI and aid in the development of new therapies. To date, this search has largely focused on the initial days after the lesion. However, during the subacute stage of SCI (weeks to months after the injury), there remains potential for sensorimotor recovery, and numerous secondary events develop in various organs. Additionally, the confounding effects of early interventions after the injury are less likely to interfere with the results. METHODS: In this study, we conducted an untargeted proteomics analysis to identify biomarkers of recovery in blood serum samples during the subacute phase of SCI patients, comparing those with strong recovery to those with no recovery between 30 and 120 days. We analyzed the fraction of serum that is depleted of the most abundant proteins to unmask proteins that would otherwise go undetected. Linear models were used to identify peptides and proteins related to neurological recovery and we validated changes in some of these proteins using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS: Our findings reveal that differences in subacute recovery after SCI (from 30 to 120 days) are associated with an enrichment in proteins involved in inflammation, coagulation, and lipid metabolism. Technical validation using commercial ELISAs further confirms that high levels of SERPINE1 and ARHGAP35 are associated with strong neurological recovery, while high levels of CD300a and DEFA1 are associated with a lack of recovery. CONCLUSIONS: Our study identifies new candidates for biomarkers of neurological recovery and for novel therapeutic targets after SCI.


Assuntos
Proteômica , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Biomarcadores/sangue , Proteínas Sanguíneas/metabolismo
2.
Sci Rep ; 14(1): 10345, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710795

RESUMO

Skeletal bone function relies on both cells and cellular niches, which, when combined, provide guiding cues for the control of differentiation and remodeling processes. Here, we propose an in vitro 3D model based on human fetal osteoblasts, which eases the study of osteocyte commitment in vitro and thus provides a means to examine the influences of biomaterials, substances or cells on the regulation of these processes. Aggregates were formed from human fetal osteoblasts (hFOB1.19) and cultivated under proliferative, adipo- and osteoinductive conditions. When cultivated under osteoinductive conditions, the vitality of the aggregates was compromised, the expression levels of the mineralization-related gene DMP1 and the amount of calcification and matrix deposition were lower, and the growth of the spheroids stalled. However, within spheres under growth conditions without specific supplements, self-organization processes occur, which promote extracellular calcium deposition, and osteocyte-like cells develop. Long-term cultivated hFOB aggregates were free of necrotic areas. Moreover, hFOB aggregates cultivated under standard proliferative conditions supported the co-cultivation of human monocytes, microvascular endothelial cells and stromal cells. Overall, the model presented here comprises a self-organizing and easily accessible 3D osteoblast model for studying bone marrow formation and in vitro remodeling and thus provides a means to test druggable molecular pathways with the potential to promote life-long bone formation and remodeling.


Assuntos
Diferenciação Celular , Técnicas de Cocultura , Osteoblastos , Humanos , Osteoblastos/metabolismo , Osteoblastos/citologia , Microambiente Celular , Células da Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Osteogênese , Agregação Celular , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA