Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(8): 20450-20468, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36258114

RESUMO

The present study highlights the olive mill wastewater (OMW) treatment characteristics through a sono-heterogeneous Fenton process using new designed [GTA-(PDA-g-DAC) @Fe3O4] and characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), magnetic properties measurements, and point of zero charge (pH pzc) analysis. A preliminary removal study showed significant degradation efficiency (75%) occurred combining the magnetic synthesized catalyst [GTA-(PDA-g-DAC)@Fe3O4] ([catalyst] = 2 g/L) with US /H2O2 and maintaining 500WL-1 ultrasonic power (US). The values obtained by US only were (13%), H2O2/US (18%), US/Fe3O4 (28%), and US /Fe3O4/H2O2(35%). The catalytic findings have shown that [GTA-(PDA-g-DAC)@Fe3O4] exhibited good properties for OMW compound's degradation. The sonocatalytic process coupling and extra oxidant addition resulted in the degradation substantial levels. For instance, the concomitant effect of degradation optimized parameters; H2O2 10 mM, [GTA-(PDA-g-DAC) @Fe3O4] nanocomposites 2.5 g/L, at pH 3, and T 35 °C for 70 min resulted in an almost complete mineralization of aqueous OMW solution followed by a significant decolorization. Oxidation results exhibited efficient degradation rates in total phenolic compounds (TPC), total amino compounds (TAC), and chemical oxygen demand (COD) oxidation rate were 89.88, 92.75, and 95.66 respectively following the optimized sono-heterogeneous catalytic Fenton process. The prepared magnetic catalyst exhibited a good stability during repeated cycles. The gathered findings gave the evidence that sono-heterogeneous catalytic Fenton process is a promising treatment technology for OMW effluents.


Assuntos
Olea , Águas Residuárias , Azeite de Oliva , Celulose , Peróxido de Hidrogênio/química , Catálise , Fenômenos Magnéticos
2.
Carbohydr Polym ; 247: 116707, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829835

RESUMO

This paper deals with the preparation of novel magnetic materials made from tetraaza macrocyclic Schiff base bacterial cellulose ligands with magnetite nanoparticles (Fe3O4NPs) through a multi-step procedure for antimicrobial and cytotoxic activities and chemotherapy in cancer treatment. First, the 2,3-dialdehyde bacterial cellulose (DABC) was chemically modified by ethylenediamine (EDA) and benzil (Bzl) in the presence of ferrous ions. Then, the magnetite nanoparticles (Fe3O4NPs) was produced inside the complex [Fe(DABC-EDA-Bzl)Cl2] through a co-precipitation method. In nanobiotechnology, the magnetic [Fe3O4NP-INS-(DABC-EDA-Bzl)] material was showed moderate antimicrobial and cytotoxic activities against different species and cells, respectively. In particular, the magnetic [Fe3O4NP-INS-(DABC-EDA-Bzl)] material have not any cytotoxic activity towards peripheral blood mononucleocyte (PBMC) cells. Anti-tumor studies demonstrated that the magnetic [Fe3O4NP-INS-(DABC-EDA-Bzl)] material effectively inhibits the growth of the CT26 tumor model in BALB/c mice compared with other resulting materials throughout the experimental period and can be effective drug delivery in nanomedicine.


Assuntos
Antibacterianos/farmacologia , Bactérias/química , Celulose/química , Neoplasias do Colo/tratamento farmacológico , Citotoxinas/farmacologia , Nanopartículas de Magnetita/química , Nanomedicina , Animais , Antibacterianos/química , Apoptose , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citotoxinas/química , Feminino , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
J Hazard Mater ; 389: 121839, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-31874761

RESUMO

Graphene oxide (GO) was chemically modified by bis(2-pyridylmethyl)amino groups (BPED) through a multistep procedure. For comparison, and to justify the grafting of BPED groups onto the GO sheets, the GO-based material obtained after each step was used as a solid phase adsorbent for removing Cu(II), Ni(II) and Co(II) metal ions from aqueous solutions. The influence of metal ion concentrations, pH, contact time and temperature on their adsorption onto the GO-based adsorbents was investigated and the GO-EDA-CAC-BPED adsorbent showed the highest ability to adsorb Cu(II), Ni(II) and Co(II) with a concentration of 250 mg.L-1 at pH = 7. Additionally, it was demonstrated that the equilibrium adsorption capacities of these metal ions followed the order of Cu(II)>Ni(II)>Co(II) whatever the GO-based adsorbent. Moreover, to examine the underlying mechanism of the adsorption process, pseudo-first order, pseudo-second order, Elovich or Roginsky-Zeldovich and intraparticle diffusion models were fitted to experimental kinetic data. It was shown that the pseudo-second-order model was the most appropriate one to describe the adsorption of heavy metal ions by the GO-based materials. Finally, it was demonstrated that their desorption/regeneration capacities were higher than 10 cycles, opening the path to the removal of metal ions from wastewater solutions.

4.
Nanotechnology ; 21(14): 145610, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20234081

RESUMO

Grafting of polystyrene (PS) from silica coating of silicon carbide nanowires (SiCNWs) has been performed by a two-step nitroxide mediated free radical polymerization (NMP) of styrene. First, an alkoxyamine based on N-tert-butyl-N-(1-diethylphosphono-2,2-dimethylpropyl) nitroxide (DEPN) was covalently attached onto NWs through free surface silanol groups. To immobilize the alkoxyamine initiator on the silica surface, alkoxylamine was formed in situ by the simultaneous reaction of polymerizable acryloxy propyl trimethoxysilane (APTMS), azobis isobutyronitrile (AIBN), and DEPN, which was used as a radical trap. Polystyrene chains with controlled molecular weights and narrow polydispersity were then grown from the alkoxyamine-functionalized NWs surface in the presence of a 'free' sacrificial styrylDEPN alkoxyamine. Both the initiator and polystyrene chains were characterized by FTIR and (13)C solid-state NMR and quantified by TGA. Ensuing nanocomposites were characterized by FEG-SEM, TEM and Raman spectroscopy. EDX analysis performed on functionalized nanowires during FEG-SEM analysis also gave evidence of grafting by a strong increase in the average C/Si atomic ratio. Incorporation of 2 wt% NWs into the polyurethane (PU) matrix has been carried out to prepare homogeneous nanocomposite films. The electric field induced thickness strain response has been investigated for the polystyrene-grafted silica coated SiC NWs (PU-SiC@SiO(2)@PS) nanocomposites and compared to pure polyurethane film and PU-SiC@SiO(2) nanocomposite without polystyrene grafting. At a moderate electric field of 10 V microm(-1), SiC@SiO(2)@PS loading increased the strain level of pure PU by a factor of 2.2. This improvement came partially due to polystyrene grafting since PU-SiC@SiO(2) films showed only a 1.7 times increase. The observed higher strain response of these nanocomposites makes them very attractive for micro-electromechanical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA