Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(4): 1007-1014, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482570

RESUMO

Highly bioavailable inorganic phosphate (Pi) is present in large quantities in the typical Western diet and represents a large fraction of total phosphate intake. Dietary Pi excess induces exercise intolerance and skeletal muscle mitochondrial dysfunction in normal mice. However, the relevance of this to humans remains unknown. The study was conducted on 13 individuals without a history of cardiopulmonary disease (46% female, 15% Black participants) enrolled in the pilot-phase of the Dallas Heart and Mind Study. Total dietary phosphate was estimated from 24-h dietary recall (ASA24). Muscle ATP synthesis was measured at rest, and phosphocreatinine (PCr) dynamics was measured during plantar flexion exercise using 7-T 31P magnetic resonance (MR) spectroscopy in the calf muscle. Correlation was assessed between dietary phosphate intake normalized to total caloric intake, resting ATP synthesis, and PCr depletion during exercise. Higher dietary phosphate intake was associated with lower resting ATP synthesis (r = -0.62, P = 0.03), and with higher levels of PCr depletion during plantar flexion exercise relative to the resting period (r = -0.72; P = 0.004). These associations remain significant after adjustment for age and estimated glomerular filtration rate (both P < 0.05). High dietary phosphate intake was also associated with lower serum Klotho levels, and Klotho levels are in turn associated with PCr depletion and higher ADP accumulation post exercise. Our study suggests that higher dietary phosphate is associated with reduced skeletal muscle mitochondrial function at rest and exercise in humans providing new insight into potential mechanisms linking the Western diet to impaired energy metabolism.NEW & NOTEWORTHY This is the first translational research study directly demonstrating the adverse effects of dietary phosphate on muscle energy metabolism in humans. Importantly, our data show that dietary phosphate is associated with impaired muscle ATP synthesis at rest and during exercise, independent of age and renal function. This is a new biologic paradigm with significant clinical dietary implications.


Assuntos
Doenças Cardiovasculares , Fosfatos , Adulto , Humanos , Feminino , Animais , Camundongos , Masculino , Doenças Cardiovasculares/metabolismo , Músculo Esquelético/fisiologia , Metabolismo Energético/fisiologia , Trifosfato de Adenosina/metabolismo , Fosfocreatina/metabolismo
2.
Hypertension ; 79(8): 1824-1834, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35652337

RESUMO

BACKGROUND: SGLT2i (sodium-glucose cotransporter 2 inhibitor), a class of anti-diabetic medications, is shown to reduce blood pressure (BP) in hypertensive patients with type 2 diabetes. Mechanisms underlying this action are unknown but SGLT2i-induced sympathoinhibition is thought to play a role. Whether SGLT2i reduces BP and sympathetic nerve activity (SNA) in a nondiabetic prehypertension model is unknown. METHODS: Accordingly, we assessed changes in conscious BP using radiotelemetry and alterations in mean arterial pressure and renal SNA during simulated exercise in nondiabetic spontaneously hypertensive rats during chronic administration of a diet containing dapagliflozin (0.5 mg/kg per day) versus a control diet. RESULTS: We found that dapagliflozin had no effect on fasting blood glucose, insulin, or hemoglobin A1C levels. However, dapagliflozin reduced BP in young (8-week old) spontaneously hypertensive rats as well as attenuated the age-related rise in BP in adult spontaneously hypertensive rat up to 17-weeks of age. The rises in mean arterial pressure and renal SNA during simulated exercise (exercise pressor reflex activation by hindlimb muscle contraction) were significantly reduced after 4 weeks of dapagliflozin (Δmean arterial pressure: 10±7 versus 25±14 mm Hg, Δrenal SNA: 31±17% versus 68±39%, P<0.05). Similarly, rises in mean arterial pressure and renal SNA during mechanoreflex stimulation by passive hindlimb stretching were also attenuated by dapagliflozin. Heart weight was significantly decreased in dapagliflozin compared with the control group. CONCLUSIONS: These data demonstrate a novel role for SGLT2i in reducing resting BP as well as the activity of skeletal muscle reflexes, independent of glycemic control. Our study may have important clinical implications for preventing hypertension and hypertensive heart disease in young prehypertensive individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão , Animais , Compostos Benzidrílicos , Pressão Sanguínea/fisiologia , Glucosídeos , Hipertensão/tratamento farmacológico , Contração Muscular/fisiologia , Ratos , Ratos Endogâmicos SHR , Sistema Nervoso Simpático
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA