Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(9): 2602-2609, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37143801

RESUMO

Saccharides displayed on the cell surface of pathogens play critical roles in many activities such as adhesion, recognition and pathogenesis, as well as in prokaryotic development. In this work, we report the synthesis of molecularly imprinted nanoparticles (nanoMIPs) against pathogen surface monosaccharides using an innovative solid-phase approach. These nanoMIPs can serve as robust and selective artificial lectins specific to one particular monosaccharide. The evaluation of their binding capabilities has been implemented against bacterial cells (E. coli and S. pneumoniae) as model pathogens. The nanoMIPs were produced against two different monosaccharides: mannose (Man), which is present mainly on the surface of Gram-negative bacteria, and N-acetylglucosamine (GlcNAc) exposed on the surface of the majority of bacteria. Herein, we assessed the potential use of nanoMIPs for pathogen cell imaging and detection via flow cytometry and confocal microscopy.

2.
Food Chem ; 380: 132141, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35101791

RESUMO

In this proof-of-concept study, we explore the detection of pesticides in food using a combined power of sensitive UV-induced fingerprint spectroscopy with selective capture by molecularly imprinted polymers (MIPs) and portable cost-effective paper-based analytical devices (PADs). The specific pesticides used herein as model compounds (both pure substances and their application products for spraying), were: strobilurins (i.e. trifloxystrobin), urea pesticides (rimsulfuron), pyrethroids (cypermethrine) and aryloxyphenoxyproponic acid herbicides (Haloxyfop-methyl). Commercially available spraying formulations containing the selected pesticides were positively identified by MIP-PADs swabs of sprayed apple and tomato. The key properties of MIP layer - imprinting factor (IF) and selectivity factor (α) were characterized using trifloxystrobin (IF-3.5, α-4.4) was demonstrated as a potential option for in-field application. The presented method may provide effective help with in-field testing of food and reveal problems such as false product labelling.


Assuntos
Impressão Molecular , Praguicidas , Polímeros Molecularmente Impressos , Praguicidas/análise , Espectrometria de Fluorescência
3.
Sci Rep ; 11(1): 13806, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226580

RESUMO

In this work, we explored a new approach to a simple and sensitive fluorescence detection of thiols. The approach takes advantage of an in-situ formation of UV light-induced fluorescent nanoparticles (ZnCd/S quantum dots), while utilizing the thiol group of the analyte as a capping agent. The selectivity is ensured by the selective isolation of the thiol analyte by a polydopamine molecularly imprinted polymeric (MIP) layer. Based on this approach, a method for determination of thiols was designed. Key experimental parameters were optimized, including those of molecular imprinting and of effective model thiol molecule (L-cysteine) isolation. The relationship between the fluorescence intensity of ZnCd/S quantum dots and the concentration of L-cysteine in the range of 12-150 µg/mL was linear with a detection limit of 3.6 µg/mL. The molecularly imprinted polymer showed high absorption mass capacity (1.73 mg/g) and an excellent selectivity factor for L-cysteine compared to N-acetyl-L-cysteine and L-homocysteine of 63.56 and 87.48, respectively. The proposed method was applied for L-cysteine determination in human urine with satisfactory results. Due to a high variability of molecular imprinting technology and versatility of in-situ probe formation, methods based on this approach can be easily adopted for analysis of any thiol of interest.

4.
Talanta ; 224: 121813, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33379038

RESUMO

The here presented work is focused on the development of a method for detection of microbial contamination of food based on uracil-selective synthetic receptors. Because uracil may serve as an indicator of bacterial contamination, its selective and on-site detection may prevent spreading of foodborne diseases. The synthetic receptors were created by molecular imprinting. Molecularly imprinted polymers for selective uracil isolation were prepared by a non-covalent imprinting method using dopamine as a functional monomer. Detection of isolated uracil was performed by capillary electrophoresis with absorption detection (λ - 260 nm). The conditions of preparation of molecularly imprinted polymers, their binding properties, adsorption kinetics and selectivity were investigated in detail. Furthermore, the prepared polymer materials were used for selective isolation and detection of uracil from complex samples as tomato products by miniaturized electrophoretic system suggesting the potential of in situ analysis of real samples.


Assuntos
Impressão Molecular , Receptores Artificiais , Adsorção , Polímeros , Uracila
5.
Food Chem ; 321: 126673, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278983

RESUMO

In this work, a novel method was developed, for isolation of S. aureus from complex (food) samples using molecular imprinting.  Dopamine was used as a functional monomer and fluorescence microscopy was used for detection. Conditions for preparation of molecularly imprinted polymers (MIPs), adsorption performance, adsorption kinetic, and selectivity of the polymeric layers were investigated. The various procedures were combined in a single extraction process, with the imprinted layer on the surface of the magnetic particles (magnetic MIPs). Subsequently, MIPs were used for extraction of S. aureus from milk and rice. Moreover, raw milk from cows with mastitis was tested successfully. Using this novel MIP-based method, it was possible to detect bacteria in milk at 1 × 103CFU·ml-1, which corresponds to the limit set in European Union legislation for microbial control of food.


Assuntos
Leite/microbiologia , Impressão Molecular/métodos , Staphylococcus aureus/isolamento & purificação , Adsorção , Animais , Bovinos , Fenômenos Magnéticos , Magnetismo , Polímeros/química , Extração em Fase Sólida
6.
J Dairy Sci ; 103(6): 4941-4950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32307169

RESUMO

Dairy cow feed contains, among other ingredients, soybeans, legumes, and clover, plants that are rich in phytoestrogens. Several publications have reported a positive influence of phytoestrogens on human health; however, several unfavorable effects have also been reported. In this work, a simple, selective, and eco-friendly method of phytoestrogen isolation based on the technique of noncovalent molecular imprinting was developed. Genistein was used as a template, and dopamine was chosen as a functional monomer. A layer of molecularly imprinted polymers was created in a microtitration well plate. The binding capability and selective properties of obtained molecularly imprinted polymers were investigated. The imprinted polymers exhibited higher binding affinity toward chosen phytoestrogen than did the nonimprinted polymers. A selectivity factor of 6.94 was calculated, confirming satisfactory selectivity of the polymeric layer. The applicability of the proposed sensing method was tested by isolation of genistein from a real sample of bovine milk and combined with micellar electrokinetic capillary chromatography with UV-visible detection.


Assuntos
Eletroforese Capilar , Leite/química , Impressão Molecular , Fitoestrógenos/análise , Animais , Bovinos , Feminino , Genisteína/análise , Genisteína/química , Impressão Molecular/métodos , Polímeros/química
7.
Sci Rep ; 10(1): 5595, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221374

RESUMO

Introduction of microfluidic mixing technique opens a new door for preparation of the liposomes and lipid-based nanoparticles by on-chip technologies that are applicable in a laboratory and industrial scale. This study demonstrates the role of phospholipid bilayer fragment as the key intermediate in the mechanism of liposome formation by microfluidic mixing in the channel with "herring-bone" geometry used with the instrument NanoAssemblr. The fluidity of the lipid bilayer expressed as fluorescence anisotropy of the probe N,N,N-Trimethyl-4-(6-phenyl-1,3,5-hexatrien-1-yl) was found to be the basic parameter affecting the final size of formed liposomes prepared by microfluidic mixing of an ethanol solution of lipids and water phase. Both saturated and unsaturated lipids together with various content of cholesterol were used for liposome preparation and it was demonstrated, that an increase in fluidity results in a decrease of liposome size as analyzed by DLS. Gadolinium chelating lipids were used to visualize the fine structure of liposomes and bilayer fragments by CryoTEM. Experimental data and theoretical calculations are in good accordance with the theory of lipid disc micelle vesiculation.


Assuntos
Lipossomos/síntese química , Fluidez de Membrana , Microfluídica/métodos , Nanoestruturas , Materiais Biocompatíveis/metabolismo , Resina de Colestiramina/metabolismo , Polarização de Fluorescência , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação
8.
Acta Biomater ; 101: 444-458, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31706042

RESUMO

Medical diagnostics aims at specific localization of molecular targets as well as detection of abnormalities associated with numerous diseases. Molecularly imprinted polymers (MIPs) represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements such as fluorescent proteins, antibodies, enzymes, or aptamers and can even be created to those targets for which no antibodies are available. In this review, we summarize the methods of polymer fabrication. Further, we provide key for selection of the core material with imaging function depending on the imaging modality used. Finally, MIP-based imaging applications are highlighted and presented in a comprehensive form from different aspects. STATEMENT OF SIGNIFICANCE: In this review, we summarize the methods of polymer fabrication. Key applications of Molecularly imprinted polymers (MIPs) in imaging are highlighted and discussed with regard to the selection of the core material for imaging as well as commonly used imaging targets. MIPs represent an approach of creating a synthetic material exhibiting selective recognition properties toward the desired template. The fabricated target-specific MIPs are usually well reproducible, economically efficient, and stable under critical conditions as compared to routinely used biorecognition elements, e.g., antibodies, fluorescent proteins, enzymes, or aptamers, and can even be created to those targets for which no antibodies are available.


Assuntos
Imageamento Tridimensional , Polímeros Molecularmente Impressos/química , Receptores Artificiais/química , Terapia Fototérmica
9.
Sci Rep ; 9(1): 11840, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413275

RESUMO

For the first time, the combination of molecularly imprinted polymer (MIP) technology with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented with focus on an optimization of the LA-ICP-MS parameters such as laser beam diameter, laser beam fluence, and scan speed using CdS quantum dots (QDs) as a template and dopamine as a functional monomer. A non-covalent imprinting approach was employed in this study due to the simplicity of preparation. Simple oxidative polymerization of the dopamine that creates the self-assembly monolayer seems to be an ideal choice. The QDs prepared by UV light irradiation synthesis were stabilized by using mercaptosuccinic acid. Formation of a complex of QD-antibody and QD-antibody-antigen was verified by using capillary electrophoresis with laser-induced fluorescence detection. QDs and antibody were connected together via an affinity peptide linker. LA-ICP-MS was employed as a proof-of-concept for detection method of two types of immunoassay: 1) antigen extracted from the sample by MIP and subsequently overlaid/immunoreacted by QD-labelled antibodies, 2) complex of antigen, antibody, and QD formed in the sample and subsequently extracted by MIP. The first approach provided higher sensitivity (MIP/NIP), however, the second demonstrated higher selectivity. A mixture of proteins with size in range 10-250 kDa was used as a model sample to demonstrate the capability of both approaches for detection of IgG in a complex sample.


Assuntos
Compostos de Cádmio/química , Imunoensaio/métodos , Terapia a Laser , Espectrometria de Massas , Impressão Molecular , Polímeros/química , Proteínas/análise , Pontos Quânticos/química , Sulfetos/química , Animais , Eletroforese Capilar , Fluorescência , Imunoglobulina G/análise , Camundongos , Processamento de Sinais Assistido por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA