Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Funct Mater ; 33(31)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38107427

RESUMO

Nanoparticle (NP) supra-assembly offers unique opportunities to tune macroscopic hydrogels' mechanical strength, material degradation, and drug delivery properties. Here, synthetic, reactive oxygen species (ROS)-responsive NPs are physically crosslinked with hyaluronic acid (HA) through guest-host chemistry to create shear-thinning NP/HA hydrogels. A library of triblock copolymers composed of poly(propylene sulfide)-bl-poly(N,N-dimethylacrylamide)-bl-poly(N,N-dimethylacrylamide-co-N-(1-adamantyl)acrylamide) are synthesized with varied triblock architectures and adamantane grafting densities and then self-assembled into NPs displaying adamantane on their corona. Self-assembled NPs are mixed with ß-cyclodextrin grafted HA to yield eighteen NP/HA hydrogel formulations. The NP/HA hydrogel platform demonstrates superior mechanical strength to HA-only hydrogels, susceptibility to oxidative/enzymatic degradation, and inherent cell-protective, antioxidant function. The performance of NP/HA hydrogels is shown to be affected by triblock architecture, guest/host grafting densities, and HA composition. In particular, the length of the hydrophilic second block and adamantane grafting density of self-assembled NPs significantly impacts hydrogel mechanical properties and shear-thinning behavior, while ROS-reactivity of poly(propylene sulfide) protects cells from cytotoxic ROS and reduces oxidative degradation of HA compared to HA-only hydrogels. This work provides insight into polymer structure-function considerations for designing hybrid NP/HA hydrogels and identifies antioxidant, shear-thinning hydrogels as promising injectable delivery platforms for small molecule drugs and therapeutic cells.

2.
Biomaterials ; 297: 122098, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031547

RESUMO

Gene silencing with siRNA nanoparticles (si-NPs) is promising but still clinically unrealized for inhibition of tumor driver genes. Ternary si-NPs containing siRNA, a single block NP core-forming polymer poly[(2-(dimethylamino)ethyl methacrylate)-co-(butyl methacrylate)] (DMAEMA-co-BMA, 50B), and an NP surface-forming diblock polymer 20 kDa poly(ethylene glycol)-block-50B (20kPEG-50B) have the potential to improve silencing activity in tumors due to the participation of both 50B and 20kPEG-50B in siRNA electrostatic loading and endosome disruptive activity. Functionally, single block 50B provides more potent endosomolytic activity, while 20kPEG-50B colloidally stabilizes the si-NPs. Here, we systematically explored the role of the molecular weight (MW) of the core polymer and of the core:surface polymer ratio on ternary si-NP performance. A library of ternary si-NPs was formulated with variation in the MW of the 50B polymer and in the ratio of the core and surface forming polymeric components. Increasing 50B core polymer MW and ratio improved si-NP in vitro gene silencing potency, endosome disruptive activity, and stability, but these features also correlated with cytotoxicity. Concomitant optimization of 50B size and ratio resulted in the identification of lead ternary si-NPs 50B4-DP100, 50B8-DP100, and 50B12-DP25, with potent activity and minimal toxicity. Following intravenous treatment in vivo, all lead si-NPs displayed negligible toxicological effects and enhanced pharmacokinetics and tumor gene silencing relative to more canonical binary si-NPs. Critically, a single 1 mg/kg intravenous injection of 50B8-DP100 si-NPs silenced the tumor driver gene Rictor at the protein level by 80% in an orthotopic breast tumor model. 50B8-DP100 si-NPs delivering siRictor were assessed for therapeutic efficacy in an orthotopic HCC70 mammary tumor model. This formulation significantly inhibited tumor growth compared to siControl-NP treatment. 50B8-DP100 si-NPs were also evaluated for safety and were well-tolerated following a multi-dose treatment scheme. This work provides new insight on ternary si-NP structure-function relationships and identifies core polymer optimization strategies that can yield safe si-NP formulations with potent oncogene silencing.


Assuntos
Nanopartículas , Polímeros , RNA Interferente Pequeno , Linhagem Celular Tumoral , Inativação Gênica
3.
Sci Transl Med ; 14(641): eabm6586, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442705

RESUMO

Porous, resorbable biomaterials can serve as temporary scaffolds that support cell infiltration, tissue formation, and remodeling of nonhealing skin wounds. Synthetic biomaterials are less expensive to manufacture than biologic dressings and can achieve a broader range of physiochemical properties, but opportunities remain to tailor these materials for ideal host immune and regenerative responses. Polyesters are a well-established class of synthetic biomaterials; however, acidic degradation products released by their hydrolysis can cause poorly controlled autocatalytic degradation. Here, we systemically explored reactive oxygen species (ROS)-degradable polythioketal (PTK) urethane (UR) foams with varied hydrophilicity for skin wound healing. The most hydrophilic PTK-UR variant, with seven ethylene glycol (EG7) repeats flanking each side of a thioketal bond, exhibited the highest ROS reactivity and promoted optimal tissue infiltration, extracellular matrix (ECM) deposition, and reepithelialization in porcine skin wounds. EG7 induced lower foreign body response, greater recruitment of regenerative immune cell populations, and resolution of type 1 inflammation compared to more hydrophobic PTK-UR scaffolds. Porcine wounds treated with EG7 PTK-UR foams had greater ECM production, vascularization, and resolution of proinflammatory immune cells compared to polyester UR foam-based NovoSorb Biodegradable Temporizing Matrix (BTM)-treated wounds and greater early vascular perfusion and similar wound resurfacing relative to clinical gold standard Integra Bilayer Wound Matrix (BWM). In a porcine ischemic flap excisional wound model, EG7 PTK-UR treatment led to higher wound healing scores driven by lower inflammation and higher reepithelialization compared to NovoSorb BTM. PTK-UR foams warrant further investigation as synthetic biomaterials for wound healing applications.


Assuntos
Materiais Biocompatíveis , Cicatrização , Animais , Bandagens , Materiais Biocompatíveis/farmacologia , Inflamação , Poliésteres , Espécies Reativas de Oxigênio , Pele , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA