Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1232670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645372

RESUMO

Aging is associated with impairments in learning, memory, and cognitive flexibility, as well as a gradual decline in hippocampal neurogenesis. We investigated the performance of 6-and 14-month-old mice (considered mature adult and late middle age, respectively) in learning and memory tasks based on the Morris water maze (MWM) and determined their levels of preceding and current neurogenesis. While both age groups successfully performed in the spatial version of MWM (sMWM), the older mice were less efficient compared to the younger mice when presented with modified versions of the MWM that required a reassessment of the previously acquired experience. This was detected in the reversal version of MWM (rMWM) and was particularly evident in the context discrimination MWM (cdMWM), a novel task that required integrating various distal cues, local cues, and altered contexts and adjusting previously used search strategies. Older mice were impaired in several metrics that characterize rMWM and cdMWM, however, they showed improvement and narrowed the performance gap with the younger mice after additional training. Furthermore, we analyzed the adult-born mature and immature neurons in the hippocampal dentate gyrus and found a significant correlation between neurogenesis levels in individual mice and their performance in the tasks demanding cognitive flexibility. These results provide a detailed description of the age-related changes in learning and memory and underscore the importance of hippocampal neurogenesis in supporting cognitive flexibility.

2.
J Neurosci ; 43(34): 6061-6083, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37532464

RESUMO

Exposure to elevated doses of ionizing radiation, such as those in therapeutic procedures, catastrophic accidents, or space exploration, increases the risk of cognitive dysfunction. The full range of radiation-induced cognitive deficits is unknown, partly because commonly used tests may be insufficiently sensitive or may not be adequately tuned for assessing the fine behavioral features affected by radiation. Here, we asked whether γ-radiation might affect learning, memory, and the overall ability to adapt behavior to cope with a challenging environment (cognitive/behavioral flexibility). We developed a new behavioral assay, the context discrimination Morris water maze (cdMWM) task, which is hippocampus-dependent and requires the integration of various contextual cues and the adjustment of search strategies. We exposed male mice to 1 or 5 Gy of γ rays and, at different time points after irradiation, trained them consecutively in spatial MWM, reversal MWM, and cdMWM tasks, and assessed their learning, navigational search strategies, and memory. Mice exposed to 5 Gy performed successfully in the spatial and reversal MWM tasks; however, in the cdMWM task 6 or 8 weeks (but not 3 weeks) after irradiation, they demonstrated transient learning deficit, decreased use of efficient spatially precise search strategies during learning, and, 6 weeks after irradiation, memory deficit. We also observed impaired neurogenesis after irradiation and selective activation of 12-week-old newborn neurons by specific components of cdMWM training paradigm. Thus, our new behavioral paradigm reveals the effects of γ-radiation on cognitive flexibility and indicates an extended timeframe for the functional maturation of new hippocampal neurons.SIGNIFICANCE STATEMENT Exposure to radiation can affect cognitive performance and cognitive flexibility - the ability to adapt to changed circumstances and demands. The full range of consequences of irradiation on cognitive flexibility is unknown, partly because of a lack of suitable models. Here, we developed a new behavioral task requiring mice to combine various types of cues and strategies to find a correct solution. We show that animals exposed to γ-radiation, despite being able to successfully solve standard problems, show delayed learning, deficient memory, and diminished use of efficient navigation patterns in circumstances requiring adjustments of previously used search strategies. This new task could be applied in other settings for assessing the cognitive changes induced by aging, trauma, or disease.


Assuntos
Hipocampo , Aprendizagem , Camundongos , Masculino , Animais , Hipocampo/fisiologia , Neurogênese/fisiologia , Cognição/fisiologia , Neurônios/fisiologia , Aprendizagem em Labirinto/fisiologia
3.
Front Neurosci ; 12: 1013, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30686979

RESUMO

While irradiation can effectively treat brain tumors, this therapy also causes cognitive impairments, some of which may stem from the disruption of hippocampal neurogenesis. To study how radiation affects neurogenesis, we combine phenotyping of subpopulations of hippocampal neural stem and progenitor cells with double- and triple S-phase labeling paradigms. Using this approach, we reveal new features of division, survival, and differentiation of neural stem and progenitor cells after exposure to gamma radiation. We show that dividing neural stem cells, while susceptible to damage induced by gamma rays, are less vulnerable than their rapidly amplifying progeny. We also show that dividing stem and progenitor cells that survive irradiation are suppressed in their ability to replicate 0.5-1 day after the radiation exposure. Suppression of division is also observed for cells that entered the cell cycle after irradiation or were not in the S phase at the time of exposure. Determining the longer term effects of irradiation, we found that 2 months after exposure, radiation-induced suppression of division is partially relieved for both stem and progenitor cells, without evidence for compensatory symmetric divisions as a means to restore the normal level of neurogenesis. By that time, most mature young neurons, born 2-4 weeks after the irradiation, still bear the consequences of radiation exposure, unlike younger neurons undergoing early stages of differentiation without overt signs of deficient maturation. Later, 6 months after an exposure to 5 Gy, cell proliferation and neurogenesis are further impaired, though neural stem cells are still available in the niche, and their pool is preserved. Our results indicate that various subpopulations of stem and progenitor cells in the adult hippocampus have different susceptibility to gamma radiation, and that neurogenesis, even after a temporary restoration, is impaired in the long term after exposure to gamma rays. Our study provides a framework for investigating critical issues of neural stem cell maintenance, aging, interaction with their microenvironment, and post-irradiation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA