Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(2): 958-973, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38088087

RESUMO

Trapping and temperature-induced migration (TIM) of the first- and second-row atoms A from H to Ne in the face-centered cubic rare gas RG = Ar, Kr and Xe crystals are investigated within the classical crystal model parameterized by the empirically modified pairwise potentials. New ab initio coupled cluster A-RG potentials computed in a uniform way for all the atoms A are used to represent the atom-crystal interactions. Absolute and relative stabilities of the substitutional and interstitial trapping sites, their structures, interstitial migration pathways, related activation energies and rough estimates of the TIM rates are obtained. The isotropic model, which neglects non-zero atomic electronic orbital momentum, reveals that migration of interstitial atoms along the network of conjugated fcc octahedral voids is the generic case for atomic mobility. Anisotropic interactions with a crystal inherent to P-state atoms B, C, O and F are accounted for using the non-relativistic diatomics-in-molecule method. Depending on its sign, interaction anisotropy can alter the structures of interstitial trapping sites and transition states remarkably. This, in turn, can dramatically affect the TIM rates. Comparison with reliable experimental data available for oxygen and hydrogen indicates a systematic overestimation of the measured activation energies, by 30% at worst. A comprehensive literature review accomplished for other atoms reveals a lack of information on the TIM processes and rates, though makes it possible to verify a part of the present results on the trapping site energies and structures.

2.
PLoS Pathog ; 18(7): e1010698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35830486

RESUMO

Baloxavir marboxil (BXM) is approved for treating uncomplicated influenza. The active metabolite baloxavir acid (BXA) inhibits cap-dependent endonuclease activity of the influenza virus polymerase acidic protein (PA), which is necessary for viral transcription. Treatment-emergent E23G or E23K (E23G/K) PA substitutions have been implicated in reduced BXA susceptibility, but their effect on virus fitness and transmissibility, their synergism with other BXA resistance markers, and the mechanisms of resistance have been insufficiently studied. Accordingly, we generated point mutants of circulating seasonal influenza A(H1N1)pdm09 and A(H3N2) viruses carrying E23G/K substitutions. Both substitutions caused 2- to 13-fold increases in the BXA EC50. EC50s were higher with E23K than with E23G and increased dramatically (138- to 446-fold) when these substitutions were combined with PA I38T, the dominant BXA resistance marker. E23G/K-substituted viruses exhibited slightly impaired replication in MDCK and Calu-3 cells, which was more pronounced with E23K. In ferret transmission experiments, all viruses transmitted to direct-contact and airborne-transmission animals, with only E23K+I38T viruses failing to infect 100% of animals by airborne transmission. E23G/K genotypes were predominantly stable during transmission events and through five passages in vitro. Thermostable PA-BXA interactions were weakened by E23G/K substitutions and further weakened when combined with I38T. In silico modeling indicated this was caused by E23G/K altering the placement of functionally important Tyr24 in the endonuclease domain, potentially decreasing BXA binding but at some cost to the virus. These data implicate E23G/K, alone or combined with I38T, as important markers of reduced BXM susceptibility, and such mutants could emerge and/or transmit among humans.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Tiepinas , Substituição de Aminoácidos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Dibenzotiepinas , Farmacorresistência Viral/genética , Endonucleases/metabolismo , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A/genética , Vírus da Influenza A/metabolismo , Morfolinas , Oxazinas/farmacologia , Piridinas/farmacologia , Piridonas/farmacologia , Tiepinas/farmacologia , Triazinas , Proteínas Virais/metabolismo
3.
Bioorg Med Chem Lett ; 43: 128055, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33892103

RESUMO

The antibacterial properties of close noscapine analogs have not been previously reported. We used our pDualrep2 double-reporter High Throughput Screening (HTS) platform to identify a series of noscapine derivatives with promising antibacterial activity. The platform is based on RPF (SOS-response/DNA damage) and Katushka2S (inhibition of translation) proteins and simultaneously provides information on antibacterial activity and the mechanism of action of small-molecule compounds against E. coli. The most potent compound exhibited an MIC of 13.5 µM(6.25 µg/ml) and a relatively low cytotoxicity against HEK293 cells (CC50 = 71 µM, selectivity index: ~5.5). Some compounds from this series induced average Katushka2S reporter signals, indicating inhibition of translation machinery in the bacteria; however, these compounds did not attenuate translation in vitro in a luciferase-based translation assay. The most effective compounds did not significantly arrest the mitotic cycle in HEK293 cells, in contrast to the parent compound in a flow cytometry assay. Several molecules showed activity against clinically relevant gram-negative and gram-positive bacterial strains. Compounds from the discovered series can be reasonably regarded as good templates for further development and evaluation.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Noscapina/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Noscapina/síntese química , Noscapina/química , Relação Estrutura-Atividade
4.
J Chem Phys ; 154(4): 044305, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514093

RESUMO

Accommodation and migration of the ground-state (2s22p4 3P) oxygen atom in the ideal Ar, Kr, and Xe rare gas crystals are investigated using the classical model. The model accounts for anisotropy of interaction between guest and host atoms, spin-orbit coupling, and lattice relaxation. Interstitial and substitutional accommodations are found to be the only thermodynamically stable sites for trapping atomic oxygen. Mixing of electronic states coupled to lattice distortions justifies that its long-range thermal migration follows the adiabatic ground-state potential energy surface. Search for the migration paths reveals a common direct mechanism for interstitial diffusion. Substitutional atoms are activated by the point lattice defects, whereas the direct guest-host exchange meets a higher activation barrier. These three low-energy migration mechanisms provide plausible interpretation for multiple migration activation thresholds observed in Kr and Xe free-standing crystals, confirmed by reasonable agreement between calculated and measured activation energies. An important effect of interaction anisotropy and a minor role of spin-orbit coupling are emphasized.

5.
Curr Drug Discov Technol ; 17(5): 716-724, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31161993

RESUMO

BACKGROUND: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. METHODS: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. RESULTS: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 µg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. CONCLUSION: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Tiofenos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiofenos/química
6.
Mol Divers ; 24(1): 233-239, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30949901

RESUMO

A series of 5-oxo-4H-pyrrolo[3,2-b]pyridine derivatives was identified as novel class of highly potent antibacterial agents during an extensive large-scale high-throughput screening (HTS) program utilizing a unique double-reporter system-pDualrep2. The construction of the reporter system allows us to perform visual inspection of the underlying mechanism of action due to two genes-Katushka2S and RFP-which encode the proteins with different imaging signatures. Antibacterial activity of the compounds was evaluated during the initial HTS round and subsequent rescreen procedure. The most active molecule demonstrated a MIC value of 3.35 µg/mL against E. coli with some signs of translation blockage (low Katushka2S signal) and no SOS response. The compound did not demonstrate cytotoxicity in standard cell viability assay. Subsequent structural morphing and follow-up synthesis may result in novel compounds with a meaningful antibacterial potency which can be reasonably regarded as an attractive starting point for further in vivo investigation and optimization.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Indolizinas/química , Piridinas/química , Sobrevivência Celular , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
7.
Comb Chem High Throughput Screen ; 22(6): 400-410, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31573876

RESUMO

INTRODUCTION: A variety of organic compounds has been reported to have antibacterial activity. However, antimicrobial resistance is one of the main problems of current anti-infective therapy, and the development of novel antibacterials is one of the main challenges of current drug discovery. METHODS: Using our previously developed dual-reporter High-Throughput Screening (HTS) platform, we identified a series of furanocoumarins as having high antibacterial activity. The construction of the reporter system allows us to differentiate three mechanisms of action for the active compounds: inhibition of protein synthesis (induction of Katushka2S), DNA damaging (induction of RFP) or other (inhibition of bacterial growth without reporter induction). RESULTS: Two primary hit-molecules of furanocoumarin series demonstrated relatively low MIC values comparable to that observed for Erythromycin (Ery) against E. coli and weakly induced both reporters. Dose-dependent translation inhibition was shown using in vitro luciferase assay, however it was not confirmed using C14-test. A series of close structure analogs of the identified hits was obtained and investigated using the same screening platform. Compound 19 was found to have slightly lower MIC value (15.18 µM) and higher induction of Katushka2S reporter in contrast to the parent structures. Moreover, translation blockage was clearly identified using both in vitro luciferase assay and C14 test. The standard cytotoxicity test revealed a relatively low cytotoxicity of the most active molecules. CONCLUSION: High antibacterial activity in combination with low cytotoxicity was demonstrated for a series of furanocoumarins. Further optimization of the described structures may result in novel and attractive lead compounds with promising antibacterial efficiency.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Furocumarinas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Células A549 , Antibacterianos/química , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Furocumarinas/química , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
8.
J Chem Phys ; 151(12): 121104, 2019 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-31575194

RESUMO

Closed-shell metal atoms in rare gas solids tend to occupy highly symmetric polyhedral crystal sites, as follows from the generic triplet Jahn-Teller splitting of the S → P excitation bands and complies with the isotropic nature of the dispersion forces. Atypical 2 + 1 Jahn-Teller splitting inherent to axially symmetric sites observed recently for Ba atoms has been therefore interpreted as the defect accommodation. By modeling the structure, stability, and spectra of the Ba atom in the face-centered cubic rare gas crystals, we identify thermodynamically stable crystal site of axial C3v symmetry that explains experimental observations. We also demonstrate the dramatic effect of the interaction anisotropy on the trapping site structure and stability for an excited P-state atom. Our results provide strong evidence for stable axially symmetric accommodation of isotropic impurity in a close-packed lattice.

9.
Front Pharmacol ; 10: 913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507413

RESUMO

Many pharmaceutical companies are avoiding the development of novel antibacterials due to a range of rational reasons and the high risk of failure. However, there is an urgent need for novel antibiotics especially against resistant bacterial strains. Available in silico models suffer from many drawbacks and, therefore, are not applicable for scoring novel molecules with high structural diversity by their antibacterial potency. Considering this, the overall aim of this study was to develop an efficient in silico model able to find compounds that have plenty of chances to exhibit antibacterial activity. Based on a proprietary screening campaign, we have accumulated a representative dataset of more than 140,000 molecules with antibacterial activity against Escherichia coli assessed in the same assay and under the same conditions. This intriguing set has no analogue in the scientific literature. We applied six in silico techniques to mine these data. For external validation, we used 5,000 compounds with low similarity towards training samples. The antibacterial activity of the selected molecules against E. coli was assessed using a comprehensive biological study. Kohonen-based nonlinear mapping was used for the first time and provided the best predictive power (av. 75.5%). Several compounds showed an outstanding antibacterial potency and were identified as translation machinery inhibitors in vitro and in vivo. For the best compounds, MIC and CC50 values were determined to allow us to estimate a selectivity index (SI). Many active compounds have a robust IP position.

11.
Phys Chem Chem Phys ; 21(30): 16549-16563, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31313774

RESUMO

A global optimization strategy is applied to Lennard-Jones models describing the stable trapping sites of a dimer in the face-centered cubic Ar-like lattice. Effective volumes of the trapping sites, quantified as the number of host atoms dislodged from the lattice, are mapped onto the parameter space defined by the strength and range of the dimer interaction potentials. The two models considered differ in the host-guest interaction and give very different maps that reflect the effect of local lattice relaxation. A hierarchical complete-linkage clustering technique is applied to identify generic structural types of the dimer accommodations. The dominant types found and enlisted maintain the symmetry of the isolated dimer and possess high tetrahedral and octahedral symmetry of the host environment with respect to the dimer atoms or center and can be roughly classified as the "whole" or "per atom" dimer accommodations. The results are compared to the analysis of the analogous model for trapped atoms and realistic model for trapped alkaline-earth metal dimers. Implications for matrix isolation spectroscopy are discussed.

12.
J Antibiot (Tokyo) ; 72(11): 827-833, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358913

RESUMO

The present report describes our efforts to identify new structural classes of compounds having promising antibacterial activity using previously published double-reporter system pDualrep2. This semi-automated high-throughput screening (HTS) platform has been applied to perform a large-scale screen of a diverse small-molecule compound library. We have selected a set of more than 125,000 molecules and evaluated them for their antibacterial activity. On the basis of HTS results, eight compounds containing 2-pyrazol-1-yl-thiazole scaffold exhibited moderate-to-high activity against ΔTolC Escherichia coli. Minimum inhibitory concentration (MIC) values for these molecules were in the range of 0.037-8 µg ml-1. The most active compound 8 demonstrated high antibacterial potency (MIC = 0.037 µg ml-1), that significantly exceed that measured for erythromycin (MIC = 2.5 µg ml-1) and was comparable with the activity of levofloxacin (MIC = 0.016 µg ml-1). Unfortunately, this compound showed only moderate selectivity toward HEK293 eukaryotic cell line. On the contrary, compound 7 was less potent (MIC = 0.8 µg ml-1) but displayed only slight cytotoxicity. Thus, 2-pyrazol-1-yl-thiazoles can be considered as a valuable starting point for subsequent optimization and morphing.


Assuntos
Antibacterianos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Tiazóis/farmacologia , Antibacterianos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tiazóis/química
14.
Comb Chem High Throughput Screen ; 22(5): 346-354, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30987560

RESUMO

AIM AND OBJECTIVE: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. MATERIALS AND METHODS: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. RESULTS: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. CONCLUSION: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


Assuntos
Antibacterianos/química , Azetidinas/farmacologia , Antibacterianos/farmacologia , Azetidinas/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Biossíntese de Proteínas/efeitos dos fármacos , Triazóis/química
15.
Bioorg Med Chem Lett ; 29(10): 1246-1255, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30904185

RESUMO

Prostate-specific membrane antigen (PSMA), also known as glutamate carboxypeptidase II (GCPII), has recently emerged as a prominent biomarker of prostate cancer (PC) and as an attractive protein trap for drug targeting. At the present time, several drugs and molecular diagnostic tools conjugated with selective PSMA ligands are actively evaluated in different preclinical and clinical trials. In the current work, we discuss design, synthesis and a preliminary biological evaluation of PSMA-specific small-molecule carrier equipped by Doxorubicin (Dox). We have introduced an unstable azo-linker between Dox and the carrier hence the designed compound does release the active substance inside cancer cells thereby providing a relatively high Dox concentration in nuclei and a relevant cytotoxic effect. In contrast, we have also synthesized a similar conjugate with a stable amide linker and it did not release the drug at all. This compound was predominantly accumulated in cytoplasm and did not cause cell death. Preliminary in vivo evaluation has showed good efficiency for the degradable conjugate against PC3-PIP(PSMA+)-containing xenograft mine. Thus, we have demonstrated that the conjugate can be used as a template to design novel analogues with improved targeting, anticancer activity and lower rate of potential side effects. 3D molecular docking study has also been performed to elucidate the underlying mechanism of binding and to further optimization of the linker area for improving the target affinity.


Assuntos
Antígenos de Superfície/química , Antineoplásicos/síntese química , Doxorrubicina/química , Glutamato Carboxipeptidase II/química , Animais , Antígenos de Superfície/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Núcleo Celular/química , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular , Neoplasias da Próstata/tratamento farmacológico , Estrutura Terciária de Proteína , Transplante Heterólogo
16.
J Chem Phys ; 150(6): 064314, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30769967

RESUMO

The complexes of the Ba atom and Ba+ cation with the rare gas atoms Ar, Kr, and Xe in the states associated with the 6s → 5d, 6p excitations are investigated by means of the multireference configuration interaction techniques. Scalar relativistic potentials are obtained by the complete basis limit extrapolation through the sequence of aug-cc-pwCVnZ basis sets with the cardinal numbers n = Q, T, 5, combined with the suitable effective core potentials and benchmarked against the coupled cluster with singles, doubles, and non-iterative triples calculations and the literature data available for selected electronic states. Spin-orbit coupling is taken into account by means of the state-interacting multireference configuration interaction calculations performed for the Breit-Pauli spin-orbit Hamiltonian. The results show weak spin-orbit coupling between the states belonging to distinct atomic multiplets. General trends in the interaction strength and long-range anisotropy along the rare gas series are discussed. Vibronic spectra of the Ba and Ba+ complexes in the vicinity of the 1S → 1P° and 2S → 2P° atomic transitions and diffusion cross sections of the Ba(1S0, 3DJ) atom in high-temperature rare gases are calculated. Comparison with available experimental data shows that multireference calculations tend to underestimate the interaction strength for excited complexes.

17.
J Phys Chem A ; 121(12): 2429-2441, 2017 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-28263615

RESUMO

Structures and energies of the trapping sites of manganese atom and dimer in solid Ar, Kr, and Xe are investigated within the classical model, which balances local distortion and long-range crystal order of the host and provides a means to estimate the relative site stabilities. The model is implemented with the additive pairwise potential field based on the ab initio and best empirical interatomic potential functions. In agreement with experiment, Mn single substitution (SS) and tetrahedral vacancy (TV) occupation are identified as stable for Ar and Kr, whereas the SS site is only found for Xe. Stable trapping sites of the weakly bound Mn2 dimer are shown to be the mergers of SS and/or TV atomic sites. For Ar, (SS + SS) and (TV + TV) sites are close in energy, whereas (SS + TV) site lies higher. The (SS + SS) accommodation is identified as the only stable site in Kr and Xe at low energies. The results are compared with the resonance Raman, electron spin resonance, and absorption spectroscopy data. Reproducing the numbers of stable sites, the calculations tend to underestimate the matrix effect on the dimer vibrational frequency and spin-spin coupling constant. Nonetheless, the level of agreement is found to be informative for tentative assignments of the complex features seen in Mn2 matrix isolation spectroscopy.

18.
J Chem Phys ; 144(4): 044302, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26827212

RESUMO

Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C(+)) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1(1)Π â†’ X(1)Σ(+) and rovibrational transitions on the X(1)Σ(+) and a(3)Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit-Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius-Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10-250 K, the rate constant is about 10(-21) cm(3) s(-1), rising toward 10(-16) cm(3) s(-1) for a temperature of 30,000 K.

19.
Bioorg Med Chem ; 24(4): 802-11, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26780833

RESUMO

A set of novel selenohydantoins were synthesized via a convenient and versatile approach involving the reaction of isoselenocyanates with various amines. We also revealed an unexpected Z→E isomerization of pyridin-2-yl-substituted selenohydantoins in the presence of Cu(2+) cations. The detailed mechanism of this transformation was suggested on the basis of quantum-chemical calculations, and the key role of Cu(2+) was elucidated. The obtained compounds were subsequently evaluated against a panel of different cancer cell lines. As a result, several molecules were identified as promising micromolar hits with good selectivity index. Instead of analogous thiohydantoins, which have been synthesized previously, selenohydantoins demonstrated a relatively high antioxidant activity comparable (or greater) to the reference molecule, Ebselen, a clinically approved drug candidate. The most active compounds have been selected for further biological trials.


Assuntos
Antineoplásicos/síntese química , Antioxidantes/síntese química , Hidantoínas/síntese química , Compostos Organosselênicos/síntese química , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Azóis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cianatos/química , Ensaios de Seleção de Medicamentos Antitumorais , Glutationa Peroxidase/antagonistas & inibidores , Glutationa Peroxidase/química , Humanos , Hidantoínas/farmacologia , Concentração Inibidora 50 , Isoindóis , Compostos Organosselênicos/farmacologia , Piridinas/química , Teoria Quântica , Estereoisomerismo , Relação Estrutura-Atividade
20.
J Phys Chem A ; 117(34): 8184-8, 2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23952902

RESUMO

Formation of the SiP radical through radiative association of Si((3)P) and P((4)S) atoms is studied using classical and quantum dynamics. Rate coefficients for formation in the two lowest doublet states and the two lowest quartet states are calculated for T = 10-20,000 K. Breit-Wigner theory is used to properly account for contribution from quantum mechanical resonances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA