Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39271574

RESUMO

PURPOSE: Anasarca is a condition that results from organ dysfunctions, such as heart, kidney, or liver failure, characterized by the presence of edema throughout the body. The quantification of accumulated edema may have potential clinical benefits. This work focuses on accurately estimating the amount of edema non-invasively using abdominal CT scans, with minimal false positives. However, edema segmentation is challenging due to the complex appearance of edema and the lack of manually annotated volumes. METHODS: We propose a weakly supervised approach for edema segmentation using initial edema labels from the current state-of-the-art method for edema segmentation (Intensity Prior), along with labels of surrounding tissues as anatomical priors. A multi-class 3D nnU-Net was employed as the segmentation network, and training was performed using an iterative annotation workflow. RESULTS: We evaluated segmentation accuracy on a test set of 25 patients with edema. The average Dice Similarity Coefficient of the proposed method was similar to Intensity Prior (61.5% vs. 61.7%; p = 0.83 ). However, the proposed method reduced the average False Positive Rate significantly, from 1.8% to 1.1% ( p < 0.001 ). Edema volumes computed using automated segmentation had a strong correlation with manual annotation ( R 2 = 0.87 ). CONCLUSION: Weakly supervised learning using 3D multi-class labels and iterative annotation is an efficient way to perform high-quality edema segmentation with minimal false positives. Automated edema segmentation can produce edema volume estimates that are highly correlated with manual annotation. The proposed approach is promising for clinical applications to monitor anasarca using estimated edema volumes.

2.
Int J Comput Assist Radiol Surg ; 19(3): 443-448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233598

RESUMO

PURPOSE: Edema, or swelling, is a common symptom of kidney, heart, and liver disease. Volumetric edema measurement is potentially clinically useful. Edema can occur in various tissues. This work focuses on segmentation and volume measurement of one common site, subcutaneous adipose tissue. METHODS: The density distributions of edema and subcutaneous adipose tissue are represented as a two-class Gaussian mixture model (GMM). In previous work, edema regions were segmented by selecting voxels with density values within the edema density distribution. This work improves upon the prior work by generating an adipose tissue mask without edema through a conditional generative adversarial network. The density distribution of the generated mask was imported into a Chan-Vese level set framework. Edema and subcutaneous adipose tissue are separated by iteratively updating their respective density distributions. RESULTS: Validation results on 25 patients with edema showed that the segmentation accuracy significantly improved. Compared to GMM, the average Dice Similarity Coefficient increased from 56.0 to 61.7% ([Formula: see text]) and the relative volume difference decreased from 36.5 to 30.2% ([Formula: see text]). CONCLUSION: The generated adipose tissue density prior improved edema segmentation accuracy. Accurate edema volume measurement may prove clinically useful.


Assuntos
Abdome , Insuficiência Cardíaca , Humanos , Edema/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Processamento de Imagem Assistida por Computador/métodos
3.
J Med Imaging (Bellingham) ; 9(1): 015503, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35229009

RESUMO

Purpose: To objectively assess new medical imaging technologies via computer-simulations, it is important to account for the variability in the ensemble of objects to be imaged. This source of variability can be described by stochastic object models (SOMs). It is generally desirable to establish SOMs from experimental imaging measurements acquired by use of a well-characterized imaging system, but this task has remained challenging. Approach: A generative adversarial network (GAN)-based method that employs AmbientGANs with modern progressive or multiresolution training approaches is proposed. AmbientGANs established using the proposed training procedure are systematically validated in a controlled way using computer-simulated magnetic resonance imaging (MRI) data corresponding to a stylized imaging system. Emulated single-coil experimental MRI data are also employed to demonstrate the methods under less stylized conditions. Results: The proposed AmbientGAN method can generate clean images when the imaging measurements are contaminated by measurement noise. When the imaging measurement data are incomplete, the proposed AmbientGAN can reliably learn the distribution of the measurement components of the objects. Conclusions: Both visual examinations and quantitative analyses, including task-specific validations using the Hotelling observer, demonstrated that the proposed AmbientGAN method holds promise to establish realistic SOMs from imaging measurements.

4.
IEEE Trans Med Imaging ; 40(11): 3249-3260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33950837

RESUMO

Tomographic image reconstruction is generally an ill-posed linear inverse problem. Such ill-posed inverse problems are typically regularized using prior knowledge of the sought-after object property. Recently, deep neural networks have been actively investigated for regularizing image reconstruction problems by learning a prior for the object properties from training images. However, an analysis of the prior information learned by these deep networks and their ability to generalize to data that may lie outside the training distribution is still being explored. An inaccurate prior might lead to false structures being hallucinated in the reconstructed image and that is a cause for serious concern in medical imaging. In this work, we propose to illustrate the effect of the prior imposed by a reconstruction method by decomposing the image estimate into generalized measurement and null components. The concept of a hallucination map is introduced for the general purpose of understanding the effect of the prior in regularized reconstruction methods. Numerical studies are conducted corresponding to a stylized tomographic imaging modality. The behavior of different reconstruction methods under the proposed formalism is discussed with the help of the numerical studies.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Alucinações , Humanos , Redes Neurais de Computação
5.
IEEE Trans Comput Imaging ; 7: 209-223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35989942

RESUMO

There remains an important need for the development of image reconstruction methods that can produce diagnostically useful images from undersampled measurements. In magnetic resonance imaging (MRI), for example, such methods can facilitate reductions in data-acquisition times. Deep learning-based methods hold potential for learning object priors or constraints that can serve to mitigate the effects of data-incompleteness on image reconstruction. One line of emerging research involves formulating an optimization-based reconstruction method in the latent space of a generative deep neural network. However, when generative adversarial networks (GANs) are employed, such methods can result in image reconstruction errors if the sought-after solution does not reside within the range of the GAN. To circumvent this problem, in this work, a framework for reconstructing images from incomplete measurements is proposed that is formulated in the latent space of invertible neural network-based generative models. A novel regularization strategy is introduced that takes advantage of the multiscale architecture of certain invertible neural networks, which can result in improved reconstruction performance over classical methods in terms of traditional metrics. The proposed method is investigated for reconstructing images from undersampled MRI data. The method is shown to achieve comparable performance to a state-of-the-art generative model-based reconstruction method while benefiting from a deterministic reconstruction procedure and easier control over regularization parameters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA