Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 29(5): 1528-1549, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38326562

RESUMO

Psychosis occurs inside the brain, but may have external manifestations (peripheral molecular biomarkers, behaviors) that can be objectively and quantitatively measured. Blood biomarkers that track core psychotic manifestations such as hallucinations and delusions could provide a window into the biology of psychosis, as well as help with diagnosis and treatment. We endeavored to identify objective blood gene expression biomarkers for hallucinations and delusions, using a stepwise discovery, prioritization, validation, and testing in independent cohorts design. We were successful in identifying biomarkers that were predictive of high hallucinations and of high delusions states, and of future psychiatric hospitalizations related to them, more so when personalized by gender and diagnosis. Top biomarkers for hallucinations that survived discovery, prioritization, validation and testing include PPP3CB, DLG1, ENPP2, ZEB2, and RTN4. Top biomarkers for delusions include AUTS2, MACROD2, NR4A2, PDE4D, PDP1, and RORA. The top biological pathways uncovered by our work are glutamatergic synapse for hallucinations, as well as Rap1 signaling for delusions. Some of the biomarkers are targets of existing drugs, of potential utility in pharmacogenomics approaches (matching patients to medications, monitoring response to treatment). The top biomarkers gene expression signatures through bioinformatic analyses suggested a prioritization of existing medications such as clozapine and risperidone, as well as of lithium, fluoxetine, valproate, and the nutraceuticals omega-3 fatty acids and magnesium. Finally, we provide an example of how a personalized laboratory report for doctors would look. Overall, our work provides advances for the improved diagnosis and treatment for schizophrenia and other psychotic disorders.


Assuntos
Biomarcadores , Farmacogenética , Medicina de Precisão , Transtornos Psicóticos , Humanos , Medicina de Precisão/métodos , Transtornos Psicóticos/genética , Transtornos Psicóticos/tratamento farmacológico , Farmacogenética/métodos , Biomarcadores/sangue , Masculino , Feminino , Alucinações/genética , Antipsicóticos/uso terapêutico , Delusões/genética , Adulto , Medição de Risco/métodos , Esquizofrenia/genética , Esquizofrenia/tratamento farmacológico
2.
Discov Ment Health ; 3(1): 10, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37861857

RESUMO

Popular culture and medical lore have long postulated a connection between full moon and exacerbations of psychiatric disorders. We wanted to empirically analyze the hypothesis that suicides are increased during the period around full moons. We analyzed pre-COVID suicides from the Marion County Coroner's Office (n = 776), and show that deaths by suicide are significantly increased during the week of the full moon (p = 0.037), with older individuals (age ≥ 55) showing a stronger effect (p = 0.019). We also examined in our dataset which hour of the day (3-4 pm, p = 0.035), and which month of the year (September, p = 0.09) show the most deaths by suicide. We had blood samples on a subset of the subjects (n = 45), which enabled us to look at possible molecular mechanisms. We tested a list of top blood biomarkers for suicidality (n = 154) from previous studies of ours 7, to assess which of them are predictive. The biomarkers for suicidality that are predictive of death by suicide during full moon, peak hour of day, and peak month of year, respectively, compared to outside of those periods, appear to be enriched in circadian clock genes. For full moon it is AHCYL2, ACSM3, AK2, and RBM3. For peak hour it is GSK3B, AK2, and PRKCB. For peak month it is TBL1XR1 and PRKCI. Half of these genes are modulated in expression by lithium and by valproate in opposite direction to suicidality, and all of them are modulated by depression and alcohol in the same direction as suicidality. These data suggest that there are temporal effects on suicidality, possibly mediated by biological clocks, pointing to changes in ambient light (timing and intensity) as a therapeutically addressable target to decrease suicidality, that can be coupled with psychiatric pharmacological and addiction treatment preventive interventions.

3.
Mol Psychiatry ; 28(7): 2894-2912, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36878964

RESUMO

Anxiety disorders are increasingly prevalent, affect people's ability to do things, and decrease quality of life. Due to lack of objective tests, they are underdiagnosed and sub-optimally treated, resulting in adverse life events and/or addictions. We endeavored to discover blood biomarkers for anxiety, using a four-step approach. First, we used a longitudinal within-subject design in individuals with psychiatric disorders to discover blood gene expression changes between self-reported low anxiety and high anxiety states. Second, we prioritized the list of candidate biomarkers with a Convergent Functional Genomics approach using other evidence in the field. Third, we validated our top biomarkers from discovery and prioritization in an independent cohort of psychiatric subjects with clinically severe anxiety. Fourth, we tested these candidate biomarkers for clinical utility, i.e. ability to predict anxiety severity state, and future clinical worsening (hospitalizations with anxiety as a contributory cause), in another independent cohort of psychiatric subjects. We showed increased accuracy of individual biomarkers with a personalized approach, by gender and diagnosis, particularly in women. The biomarkers with the best overall evidence were GAD1, NTRK3, ADRA2A, FZD10, GRK4, and SLC6A4. Finally, we identified which of our biomarkers are targets of existing drugs (such as a valproate, omega-3 fatty acids, fluoxetine, lithium, sertraline, benzodiazepines, and ketamine), and thus can be used to match patients to medications and measure response to treatment. We also used our biomarker gene expression signature to identify drugs that could be repurposed for treating anxiety, such as estradiol, pirenperone, loperamide, and disopyramide. Given the detrimental impact of untreated anxiety, the current lack of objective measures to guide treatment, and the addiction potential of existing benzodiazepines-based anxiety medications, there is a urgent need for more precise and personalized approaches like the one we developed.


Assuntos
Farmacogenética , Medicina de Precisão , Humanos , Feminino , Medicina de Precisão/métodos , Qualidade de Vida , Transtornos de Ansiedade/tratamento farmacológico , Transtornos de Ansiedade/genética , Transtornos de Ansiedade/psicologia , Biomarcadores , Medição de Risco , Benzodiazepinas , Proteínas da Membrana Plasmática de Transporte de Serotonina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA