Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(23): 24751-24760, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882173

RESUMO

Apigenin, a flavonoid, is reported to have multiple health benefits including cancer prevention; this study evaluates the drug likeliness and Swiss ADME properties of apigenin. Apoptosis, which is a key hallmark of cancer, is associated with the deregulation of the balance between proapoptotic proteins and antiapoptotic proteins such as BCL-2,BCL-xl, BFL-1, BCL-w, BRAG-16, and MCL-1. The docking studies of apigenin with the mentioned proteins was performed to identify the interactions between the ligand and proteins, which suggested that apigenin was able to bind to most of the proteins similar to the inhibitory molecules of its native structure. A remarkable reduction in the total energy after energy minimization of apigenin-antiapoptotic protein complexes suggested increased stability of the docked complexes. The same complexes were found to be stable over a 10 ns period of molecular simulation at 300 K. These findings advocated the study to evaluate apigenin's potential to inhibit the HeLa cells at 5, 10, and 15 µM concentrations in the clonogenic assay. Apigenin inhibited the colony-forming ability of HeLa cells in a dose-dependent manner over a fortnight. Light microscopy of the treated cells displayed the morphological evidence characteristic of apoptosis in HeLa cells such as blebbing, spike formation, cytoplasmic oozing, and nuclear fragmentation. Thus, these results clearly indicate that apigenin may be used as a potential chemopreventive agent in cervical cancer management.

2.
Int J Mol Sci ; 23(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35409426

RESUMO

Cancer progression is linked to abnormal epigenetic alterations such as DNA methylation and histone modifications. Since epigenetic alterations, unlike genetic changes, are heritable and reversible, they have been considered as interesting targets for cancer prevention and therapy by dietary compounds such as luteolin. In this study, epigenetic modulatory behaviour of luteolin was analysed on HeLa cells. Various assays including colony forming and migration assays, followed by biochemical assays of epigenetic enzymes including DNA methyltransferase, histone methyl transferase, histone acetyl transferase, and histone deacetylases assays were performed. Furthermore, global DNA methylation and methylation-specific PCR for examining the methylation status of CpG promoters of various tumour suppressor genes (TSGs) and the expression of these TSGs at transcript and protein level were performed. It was observed that luteolin inhibited migration and colony formation in HeLa cells. It also modulated DNA methylation at promoters of TSGs and the enzymatic activity of DNMT, HDAC, HMT, and HAT and reduced the global DNA methylation. Decrease in methylation resulted in the reactivation of silenced tumour suppressor genes including FHIT, DAPK1, PTEN, CDH1, SOCS1, TIMPS, VHL, TP53, TP73, etc. Hence, luteolin-targeted epigenetic alterations provide a promising approach for cancer prevention and intervention.


Assuntos
Luteolina , Neoplasias , Metilação de DNA , Metilases de Modificação do DNA/genética , Desmetilação , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Células HeLa , Código das Histonas , Histona Desacetilases/metabolismo , Humanos , Luteolina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA