Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Bioorg Chem ; 152: 107711, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39178706

RESUMO

Cancer immunotherapy leverages the immune system's inherent capacity to combat malignancies. However, effective stimulation of Dendritic cells (DCs) is challenging due to their limited distribution and the immune-suppressive tumor microenvironment. Thus, targeting mannose receptors, which are highly expressed on DCs, represents a promising strategy. This study investigates the development of mannose-based glycopolymer nanoparticles to induce activation of DCs through enhanced antigen presentation. A novel ABA-type triblock bioconjugated glycopolymer (PMn-b-PCL-b-PMn), which mimics mannose was synthesized. This polymer was further modified with Dihexadecyldimethylammonium bromide (DHDAB) to prepare cationic nanoparticles (CMNP) for gene delivery of pCMV-TRP2, an antigenic marker for both melanoma and glioblastoma. The immune response generated by CMNP and the CMNP-TRP2 polyplex was compared to an untreated control following subcutaneous injection in mice. Post-injection cytometric analysis revealed robust DC activation and increased T-cell populations in secondary lymphoid organs, including the spleen and lymph nodes. These findings suggest that CMNP can serve as a potent biomimicking vaccination vehicle against cancer, enhancing the immune response through targeted DCs activation.


Assuntos
Células Dendríticas , Imunoterapia , Manose , Camundongos Endogâmicos C57BL , Nanopartículas , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Nanopartículas/química , Animais , Manose/química , Manose/farmacologia , Camundongos , Polímeros/química , Polímeros/farmacologia , Polímeros/síntese química , Estrutura Molecular , Humanos , Feminino , Relação Estrutura-Atividade , Relação Dose-Resposta a Droga
2.
Nanomedicine (Lond) ; 19(15): 1389-1406, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38912661

RESUMO

Aim: To assess the chemo-immunomodulatory effects of doxorubicin-loaded cerium oxide nanoparticles coated with oleyl amine-linked cyclic RGDfK peptide (CeNP+Dox+RGD) to target both gliomas and its tumor microenvironment (TME) via integrin receptors. Materials & methods: CeNP+Dox+RGD nanoparticles are synthesized by the sequential addition of cerium III chloride heptahydrate, beta-cyclodextrin, oleic acid, and F127 micelle (CeNP). Doxorubicin was then loaded into CeNPs and coated with oleyl amine-linked cyclic RGDfK peptide to form stable CeNP+Dox+RGD nanoparticles. Results: CeNP+Dox+RGD nanoparticles crossed blood-brain barrier (BBB) effectively and demonstrated threefold enhanced survivability in glioma-bearing mice. The IHC profiling of glial tumor cross-sections showed increased CD80 expression (M1 TAMs) and decreased arginase-1 expression (M2 TAMs). Conclusion: CeNP+Dox+RGD can be an immunotherapeutic treatment option to combat glioblastoma.


[Box: see text].


Assuntos
Cério , Doxorrubicina , Glioblastoma , Nanopartículas , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Camundongos , Nanopartículas/química , Humanos , Cério/química , Cério/farmacologia , Linhagem Celular Tumoral , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Integrinas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Microambiente Tumoral/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Micelas , Oligopeptídeos/química , Oligopeptídeos/farmacologia
3.
RSC Adv ; 12(27): 17585-17595, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35765449

RESUMO

Metal nanoclusters (NCs) composed of the least number of atoms (a few to tens) have become very attractive for their emerging properties owing to their ultrasmall size. Preparing copper nanoclusters (Cu NCs) in an aqueous medium with high emission properties, strong colloidal stability, and low toxicity has been a long-standing challenge. Although Cu NCs are earth-abundant and inexpensive, they have been comparatively less explored due to their various limitations, such as ease of surface oxidation, poor colloidal stability, and high toxicity. To overcome these constraints, we established a facile synthetic route by optimizing the reaction parameters, especially altering the effective concentration of the reducing agent, to influence their optical characteristics. The improvement of the photoluminescence intensity and superior colloidal stability was modeled from a theoretical standpoint. Moreover, the as-synthesized Cu NCs showed a significant reduction of toxicity in both in vitro and in vivo models. The possibility of using such Cu NCs as a diagnostic probe toward C. elegans was explored. Also, the extension of our approach toward improving the photoluminescence intensity of the Cu NCs on other ligand systems was demonstrated.

4.
ACS Appl Bio Mater ; 3(2): 869-880, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019289

RESUMO

Recently, the design of a theranostics system has involved increasing attention in the area of biomedical applications. In many cases, the intricate synthesis process of upconversion nanoparticle-based composite materials limits the use of theranostics applications. To address this challenge, a nanocomposite has been successfully fabricated by the conjugation of magnetic NaGdF4:Yb/Er nanoparticles as an imaging agent and MIL-53(Fe) as a drug carrier through a single step. Simultaneously, folic acid is encapsulated on the surface of the nanocomposite by conjugation chemistry to achieve the targeted drug delivery applications. The synthesized nanocomposite exhibits a sufficient amount of loading ability toward the model anticancer doxorubicin and possesses pH-responsive drug release. The functionalized nanocomposite not only possesses excellent colloidal stability and good magnetic and fluorescence property but also shows superior biocompatibility, strong tumor cell growth inhibitory effect, and cancer-enhanced cellular uptake. It is expected that the synthesized nanocomposite can also serve as a platform for both T1 and T2 MRI contrast agents.

5.
ACS Chem Neurosci ; 9(12): 2948-2958, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29996045

RESUMO

The presynaptic protein, α-synuclein (α-syn), has been shown to play a crucial role in multiple neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), and dementia with Lewy bodies (DLB). The three major domains of α-syn protein were shown to govern its membrane interaction, protein fibrillation, and chaperone activity. So far, four different alternatively spliced isoforms of α-syn, which lack either exon 3 (syn-126) or exon 5 (syn-112) or both (syn-98) resulting in altered function of the proteins, have been identified. In the present study, we have identified the smallest isoform of α-syn due to the skipping of exons 3 and 4 generating a 238 bp transcript. Due to the presence of a premature stop codon, the 238 bp transcript generated a 41 aa N-terminal peptide instead of the 78 aa protein, which is secreted into the extracellular medium when overexpressed in cells. The presence of 41-syn was initially noticed in the substantia nigra of PD autopsy tissues, as well as in cells undergoing oxidative stress. In vitro studies inferred that 41-syn neither aggregates nor alters the aggregation propensity of either WT or 112-syn. Overexpression of 41-syn or treatment of cells with 41-syn peptide did not affect cell viability. However, PC-12 cells treated with 41-syn exhibited a time and dose dependent enhancement in the cellular uptake of dopamine. Based on the physiological role of the N-terminal region of α-syn in modulating membrane trafficking events, we believe that the identification of 41-syn may provide novel impetus in unraveling the physiological basis of alternative splicing events in governing PD pathophysiology.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Autopsia , Linhagem Celular Tumoral , Sobrevivência Celular , Homeostase , Humanos , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Células PC12 , Doença de Parkinson/líquido cefalorraquidiano , Isoformas de Proteínas , Isoformas de RNA , RNA Mensageiro/metabolismo , Ratos , Sinapses/metabolismo , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia
6.
J Drug Target ; 26(5-6): 481-493, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29376759

RESUMO

Function of steroid hormone oestrogen that transactivates oestrogen receptor (ER) is expressed in multiple organs. Except for malignancies of gynaecological organs, ER remains largely unutilised as a target to treat cancers of ER-expressing brain, prostate, skin etc. We have previously developed oestrogen targeting cationic lipid molecule (ES-C10), which showed targeted killing of ER + breast and skin cancer cells. In this study, we explored the targeting ability of ES-C10 as a ligand as well as its additive killing effect (if any), when incorporated in two different liposomes (DCME and DCDE), carrying two anticancer molecules MCIS3 and Docetaxel™, respectively. DCME and DCDE exhibited higher cytotoxicity in ER + cancer cells than in ER - cancer or in non-cancer cells. Both liposomes induced ER-mediated cytotoxicity and caspase 3-induced apoptosis in ER + melanoma cells. Further, decreased levels of pAkt, and increased levels of PTEN and p53 were also observed. Both the targeted liposomes were least haemolytic. These selectively delivered drug-cargoes to tumour mass over other vital organs and induced better anti-tumour effect, which led to increased survivability than their respective controls. In conclusion, we demonstrated the development of two independent liposomal drug-delivery systems associated with an anticancer, oestrogen-structure based ligand for efficient, ER-mediated anti-melanoma effect.


Assuntos
Docetaxel/administração & dosagem , Sistemas de Liberação de Medicamentos , Isatina/administração & dosagem , Melanoma/tratamento farmacológico , Oxindóis/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Antineoplásicos/toxicidade , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/toxicidade , Feminino , Humanos , Isatina/análogos & derivados , Isatina/farmacologia , Isatina/toxicidade , Lipídeos/química , Lipossomos , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Oxindóis/farmacologia , Oxindóis/toxicidade , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Neoplasias Cutâneas/patologia , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA