Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29390, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655368

RESUMO

In this study, a novel series of pyridine-based thiadiazole derivatives (NTD1-NTD5) were synthesized as prospective anti-inflammatory agents by combining substituted carboxylic acid derivatives of 5-substituted-2-amino-1,3,4-thiadiazole with nicotinoyl isothiocyanate in the presence of acetone. The newly synthesized compounds were characterized by FTIR, 1H NMR, 13C NMR, and mass spectrometry. First, the compounds underwent rigorous in vivo testing for acute toxicity and anti-inflammatory activity and the results revealed that three compounds-NTD1, NTD2, and NTD3, displayed no acute toxicity and significant anti-inflammatory activity, surpassing the efficacy of the standard drug, diclofenac. Notably, NTD3, which featured benzoic acid substitution, emerged as the most potent anti-inflammatory agent among the screened compounds. To further validate these findings, an in silico docking study was carried out against COX-2 bound to diclofenac (PDB ID: 1pxx). The computational analysis demonstrated that NTD2, and NTD3, exhibited substantial binding affinity, with the lowest binding energies (-8.5 and -8.4, kcal/mol) compared to diclofenac (-8.4 kcal/mol). This alignment between in vivo and in silico data supported the robust anti-inflammatory potential of these derivatives. Moreover, molecular dynamics simulations were conducted, extending over 100 ns, to examine the dynamic interactions between the ligands and the target protein. The results solidified NTD3's position as a leading candidate, showing potent inhibitory activity through strong and sustained interactions, including stable hydrogen bond formations. This was further confirmed by RMSD values of 2-2.5 Å and 2-3Ǻ, reinforcing NTD3's potential as a useful anti-inflammatory agent. The drug likeness analysis of NTD3 through SwissADME indicated that most of the predicted parameters including Lipinski rule were within acceptable limits. While these findings are promising, further research is necessary to elucidate the precise relationships between the chemical structures and their activity, as well as to understand the mechanisms underlying their pharmacological effects. This study lays the foundation for the development of novel anti-inflammatory therapeutics, potentially offering improved efficacy and safety profiles.

2.
Molecules ; 29(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38338472

RESUMO

Cutaneous wounds pose a significant health burden, affecting millions of individuals annually and placing strain on healthcare systems and society. Nanofilm biomaterials have emerged as promising interfaces between materials and biology, offering potential for various biomedical applications. To explore this potential, our study aimed to assess the wound healing efficacy of amniotic fluid and Moringa olifera-loaded nanoclay films by using in vivo models. Additionally, we investigated the antioxidant and antibacterial properties of these films. Using a burn wound healing model on rabbits, both infected and non-infected wounds were treated with the nanoclay films for a duration of twenty-one days on by following protocols approved by the Animal Ethics Committee. We evaluated wound contraction, proinflammatory mediators, and growth factors levels by analyzing blood samples. Histopathological changes and skin integrity were assessed through H&E staining. Statistical analysis was performed using SPSS software (version 2; Chicago, IL, USA) with significance set at p < 0.05. Our findings demonstrated a significant dose-dependent increase in wound contraction in the 2%, 4%, and 8% AMF-Me.mo treatment groups throughout the study (p < 0.001). Moreover, macroscopic analysis revealed comparable effects (p > 0.05) between the 8% AMF-Me.mo treatment group and the standard treatment. Histopathological examination confirmed the preservation of skin architecture and complete epidermal closure in both infected and non-infected wounds treated with AMF-Me.mo-loaded nanofilms. RT-PCR analysis revealed elevated concentrations of matrix metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF), along with decreased levels of tumor necrosis factor-alpha (TNF-α) in AMF-Me.mo-loaded nanofilm treatment groups. Additionally, the antimicrobial activity of AMF-Me.mo-loaded nanofilms contributed to the decontamination of the wound site, positioning them as potential candidates for effective wound healing. However, further extensive clinical trials-based studies are necessary to confirm these findings.


Assuntos
Moringa , Animais , Coelhos , Moringa/metabolismo , Líquido Amniótico/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização , Pele/metabolismo
3.
Biomed Pharmacother ; 173: 116275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394846

RESUMO

Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Perda de Heterozigosidade , Genes Supressores de Tumor , Mutação/genética , Transformação Celular Neoplásica/genética
4.
ACS Omega ; 8(46): 44287-44311, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027360

RESUMO

The aurora kinase is a key enzyme that is implicated in tumor growth. Research revealed that small molecules that target aurora kinase have beneficial effects as anticancer agents. In the present study, in order to identify potential antibreast cancer agents with aurora kinase inhibitory activity, we employed QSARINS software to perform the quantitative structure-activity relationship (QSAR). The statistical values resulted from the study include R2 = 0.8902, CCCtr = 0.7580, Q2 LOO = 0.7875, Q2LMO = 0.7624, CCCcv = 0.7535, R2ext = 0.8735, and CCCext = 0.8783. Among the four generated models, the two best models encompass five important variables, including PSA, EstateVSA5, MoRSEP3, MATSp5, and RDFC24. The parameters including the atomic volume, atomic charges, and Sanderson's electronegativity played an important role in designing newer lead compounds. Based on the above data, we have designed six series of compounds including 1a-e, 2a-e, 3a-e, 4a-e, 5a-e, and 6a-e. All these compounds were subjected to molecular docking studies by using AutoDock v4.2.6 against the aurora kinase protein (1MQ4). Among the above 30 compounds, the 2-amino thiazole derivatives 1a, 2a, 3e, 4d, 5d, and 6d have excellent binding interactions with the active site of 1MQ4. Compound 1a had the highest docking score (-9.67) and hence was additionally subjected to molecular dynamic simulation investigations for 100 ns. The stable binding of compound 1a with 1MQ4 was verified by RMSD, RMSF, RoG, H-bond, molecular mechanics-generalized Born surface area (MM-GBSA), free binding energy calculations, and solvent-accessible surface area (SASA) analyses. Furthermore, newly designed compound 1a exhibited excellent ADMET properties. Based on the above findings, we propose that the designed compound 1a may be utilized as the best theoretical lead for future experimental research of selective inhibition of aurora kinase, therefore assisting in the creation of new antibreast cancer drugs.

5.
Med Chem ; 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37946342

RESUMO

Benzimidazole nucleus is a predominant heterocycle displaying a wide spectrum of pharmacological activities. The privileged nature of the benzimidazole scaffold has been revealed by its presence in most small molecule drugs and in its ability to bind multiple receptors with high affinity. A literature review of the scaffold reveals several instances where structural modifications of the benzimidazole core have resulted in high-affinity lead compounds against a variety of biological targets. Hence, this structural moiety offers opportunities to discover novel, better, safe and highly potent biological agents. The goal of the present review is to compile the medicinal properties of benzimidazole derivatives with a focus on SAR (Structure-Activity Relationships).

6.
RSC Adv ; 13(17): 11368-11384, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37057268

RESUMO

In the pre-antibiotic era, common bacterial infections accounted for high mortality and morbidity. Moreover, the discovery of penicillin in 1928 marked the beginning of an antibiotic revolution, and this antibiotic era witnessed the discovery of many novel antibiotics, a golden era. However, the misuse or overuse of these antibiotics, natural resistance that existed even before the antibiotics were discovered, genetic variations in bacteria, natural selection, and acquisition of resistance from one species to another consistently increased the resistance to the existing antibacterial targets. Antibacterial resistance (ABR) is now becoming an ever-increasing concern jeopardizing global health. Henceforth, there is an urgent unmet need to discover novel compounds to combat ABR, which act through untapped pathways/mechanisms. Filamentous Temperature Sensitive mutant Z (FtsZ) is one such unique target, a tubulin homolog involved in developing a cytoskeletal framework for the cytokinetic ring. Additionally, its pivotal role in bacterial cell division and the lack of homologous structural protein in mammals makes it a potential antibacterial target for developing novel molecules. Approximately 2176 X-crystal structures of FtsZ were available, which initiated the research efforts to develop novel antibacterial agents. The literature has reported several natural, semisynthetic, peptides, and synthetic molecules as FtsZ inhibitors. This review provides valuable insights into the basic crystal structure of FtsZ, its inhibitors, and their inhibitory activities. This review also describes the available in vitro detection and quantification methods of FtsZ-drug complexes and the various approaches for determining drugs targeting FtsZ polymerization.

7.
ACS Omega ; 8(4): 4294-4319, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36743017

RESUMO

The abnormal expression of the c-Met tyrosine kinase has been linked to the proliferation of several human cancer cell lines, including non-small-cell lung cancer (NSCLC). In this context, the identification of new c-Met inhibitors based on heterocyclic small molecules could pave the way for the development of a new cancer therapeutic pathway. Using multiple linear regression (MLR)-quantitative structure-activity relationship (QSAR) and artificial neural network (ANN)-QSAR modeling techniques, we look at the quantitative relationship between the biological inhibitory activity of 40 small molecules derived from cyclohexane-1,3-dione and their topological, physicochemical, and electronic properties against NSCLC cells. In this regard, screening methods based on QSAR modeling with density-functional theory (DFT) computations, in silico pharmacokinetic/pharmacodynamic (ADME-Tox) modeling, and molecular docking with molecular electrostatic potential (MEP) and molecular mechanics-generalized Born surface area (MM-GBSA) computations were used. Using physicochemical (stretch-bend, hydrogen bond acceptor, Connolly molecular area, polar surface area, total connectivity) and electronic (total energy, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels) molecular descriptors, compound 6d is identified as the optimal scaffold for drug design based on in silico screening tests. The computer-aided modeling developed in this study allowed us to design, optimize, and screen a new class of 36 small molecules based on cyclohexane-1,3-dione as potential c-Met inhibitors against NSCLC cell growth. The in silico rational drug design approach used in this study led to the identification of nine lead compounds for NSCLC therapy via c-Met protein targeting. Finally, the findings are validated using a 100 ns series of molecular dynamics simulations in an aqueous environment on c-Met free and complexed with samples of the proposed lead compounds and Foretinib drug.

8.
BioTech (Basel) ; 12(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36648830

RESUMO

BACKGROUND: Polycystic ovarian syndrome (PCOS) is a neuroendocrine metabolic disorder characterized by an irregular menstrual cycle. Treatment for PCOS using synthetic drugs is effective. However, PCOS patients are attracted towards natural remedies due to the effective therapeutic outcomes with natural drugs and the limitations of allopathic medicines. In view of the significance of herbal remedies, herein, we discuss the role of different herbs in PCOS. METHODS: By referring to the Scopus, PubMed, Google Scholar, Crossref and Hinari databases, a thorough literature search was conducted and data mining was performed pertaining to the effectiveness of herbal remedies against PCOS. RESULTS: In this review, we discuss the significance of herbal remedies in the treatment of PCOS, and the chemical composition, mechanism of action and therapeutic application of selected herbal drugs against PCOS. CONCLUSIONS: The present review will be an excellent resource for researchers working on understanding the role of herbal medicine in PCOS.

9.
Antibiotics (Basel) ; 11(12)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36551338

RESUMO

Fused pyridines are reported to display various pharmacological activities, such as antipyretic, analgesic, antiprotozoal, antibacterial, antitumor, antifungal, anti-inflammatory, and antiapoptotic. They are widely used in the field of medicinal chemistry. Imidazopyridines (IZPs) are crucial classes of fused heterocycles that are expansively reported on in the literature. Evidence suggests that IZPs, as fused scaffolds, possess more diverse profiles than individual imidazole and pyridine moieties. Bacterial infections and antibacterial resistance are ever-growing risks in the 21st century. Only one IZP, i.e., rifaximin, is available on the market as an antibiotic. In this review, the authors highlight strategies for preparing other IZPs. A particular focus is on the antibacterial profile and structure-activity relationship (SAR) of various synthesized IZP derivatives. This research provides a foundation for the tuning of available compounds to create novel, potent antibacterial agents with fewer side effects.

10.
Sci Rep ; 12(1): 16368, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180452

RESUMO

Tuberculosis (TB) is one of the emerging infectious diseases in the world. DprE1 (Decaprenylphosphoryl-ß-D-ribose 2'-epimerase), an enzyme accountable for mycobacterial cell wall synthesis was the first drug gable target based on discoveries of inhibitors via HTS (high throughput screening). Since then, many literature reports have been published so far enlightening varieties of chemical scaffolds acting as inhibitors of DprE1. Herein, in our present study, we have developed statistically robust GA-MLR (genetic algorithm multiple linear regression), atom-based as well as field based-3D-QSAR models. Both atom-based as well as field based-3D-QSAR models (internally as well as externally validated) were obtained with robust Training set, R2 > 0.69 and Test set, Q2 > 0.50. We have also developed top ranked 5 point hypothesis AAAHR_1 among 14 CPHs (common pharmacophore hypotheses). We found that our dataset molecule had more docking score (XP mode = - 9.068 kcal/mol) than the standards isoniazid and ethambutol; when docked into binding pockets of enzyme 4P8C with Glide module. We further queried our best docked dataset molecule 151 for ligand based virtual screening using "SwissSimilarity" platform. Among 9 identified hits, we found ZINC12196803 had best binding energies and docking score (docking score = - 9.437 kcal/mol, MMGBSA dgBind = - 70.508 kcal/mol). Finally, our molecular dynamics studies for 1.2-100 ns depicts that these complexes are stable. We have also carried out in-silico ADMET predictions, Cardiac toxicity, 'SwissTargetPredictions' and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) binding energy calculations for further explorations of dataset as well as hit molecules. Our current studies showed that the hit molecule ZINC12196803 may enlighten the path for future developments of DprE1 inhibitors.


Assuntos
Hidantoínas , Antituberculosos/química , Antituberculosos/farmacologia , Etambutol , Isoniazida , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Oxirredutases , Relação Quantitativa Estrutura-Atividade , Racemases e Epimerases , Ribose
11.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012735

RESUMO

Diabetes is an endocrinological disorder with a rapidly increasing number of patients globally. Over the last few years, the alarming status of diabetes has become a pivotal factor pertaining to morbidity and mortality among the youth as well as middle-aged people. Current developments in our understanding related to autoimmune responses leading to diabetes have developed a cause for concern in the prospective usage of immunomodulatory agents to prevent diabetes. The mechanism of action of vaccines varies greatly, such as removing autoreactive T cells and inhibiting the interactions between immune cells. Currently, most developed diabetes vaccines have been tested in animal models, while only a few human trials have been completed with positive outcomes. In this review, we investigate the undergoing clinical trial studies for the development of a prototype diabetes vaccine.


Assuntos
Diabetes Mellitus Tipo 2 , Vacinas , Adolescente , Animais , Autoimunidade , Diabetes Mellitus Tipo 2/prevenção & controle , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Linfócitos T , Vacinas/uso terapêutico
12.
RSC Adv ; 12(31): 20096-20109, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35919619

RESUMO

Sigma receptors (σ1 R and σ2 R) are pharmacologically characterized membrane-bound receptors that bind a wide range of chemical compounds. Alzheimer's disease, traumatic brain injury, schizophrenia, and neuropathic pain have all been associated with abnormal σ2 activity. The σ2 receptor has recently been identified as a potential therapeutic target for inhibiting the formation of amyloid plaques. Numerous laboratories are now investigating the potential of σ2 ligands. Small molecule discovery is the focus of current research, with the goal of using target-based action to treat a variety of illnesses and ailments. Functionalized γ-butyrolactone and oxazolidinone-based ligands, in particular, are pharmacologically important scaffolds in drug discovery research and have been thoroughly examined for σ2 receptor efficacy. The purpose of this study was to evaluate the pharmacophoric features of different σ2 receptor ligands using in silico techniques. This study used a library of 58 compounds having a γ-butyrolactone and oxazolidinone core. To investigate the binding characteristics of the ligands with the σ2 receptor, a 3D homology model was developed. To understand the binding pattern of the γ-butyrolactone and oxazolidinone based ligands, molecular docking studies were performed on both σ1 and σ2 receptors. Furthermore, MM/GBSA binding energy calculations were used to confirm the binding of ligands on the σ2 over σ1 receptor. These in silico findings will aid in the discovery of selective σ2 ligands with good pharmacophoric properties and potency in the future.

13.
PLoS One ; 17(6): e0265068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709194

RESUMO

A series of newer previously synthesized fluorinated chalcones and their 2-amino-pyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives were screened for their in vitro antitubercular activity and in silico methods. Compound 40 (MIC~ 8 µM) was the most potent among all 60 compounds, whose potency is comparable with broad spectrum antibiotics like ciprofloxacin and streptomycin and three times more potent than pyrazinamide. Additionally, compound 40 was also less selective and hence non-toxic towards the human live cell lines-LO2 in its MTT assay. Compounds 30, 27, 50, 41, 51, and 60 have exhibited streptomycin like activity (MIC~16-18 µM). Fluorinated chalcones, pyridine and pyran derivatives were found to occupy prime position in thymidylate kinase enzymatic pockets in molecular docking studies. The molecule 40 being most potent had shown a binding energy of -9.67 Kcal/mol, while docking against thymidylate kinase, which was compared with its in vitro MIC value (~8 µM). These findings suggest that 2-aminopyridine-3-carbonitrile and 2-amino-4H-pyran-3-carbonitrile derivatives are prospective lead molecules for the development of novel antitubercular drugs.


Assuntos
Chalcona , Chalconas , Aminopiridinas , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Estudos Prospectivos , Piranos , Estreptomicina , Relação Estrutura-Atividade
14.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335208

RESUMO

Cancer is a life-threatening disease and is the second leading cause of death worldwide. Although many drugs are available for the treatment of cancer, survival outcomes are very low. Hence, rapid development of newer anticancer agents is a prime focus of the medicinal chemistry community. Since the recent past, computational methods have been extensively employed for accelerating the drug discovery process. In view of this, in the present study we performed 2D-QSAR (Quantitative Structure-Activity Relationship) analysis of a series of compounds reported with potential anticancer activity against breast cancer cell line MCF7 using QSARINS software. The best four models exhibited a r2 value of 0.99. From the generated QSAR equations, a series of pyrimidine-coumarin-triazole conjugates were designed and their MCF7 cell inhibitory activities were predicted using the QSAR equations. Furthermore, molecular docking studies were carried out for the designed compounds using AutoDock Vina against dihydrofolate reductase (DHFR), colchicine and vinblastine binding sites of tubulin, the key enzyme targets in breast cancer. The most active compounds identified through these computational studies will be useful for synthesizing and testing them as prospective novel anti-breast cancer agents.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacologia , Cumarínicos/química , Cumarínicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Relação Quantitativa Estrutura-Atividade , Triazóis/farmacologia
15.
Molecules ; 26(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34500603

RESUMO

The past few decades have witnessed significant progress in anticancer drug discovery. Small molecules containing heterocyclic moieties have attracted considerable interest for designing new antitumor agents. Of these, the pyrimidine ring system is found in multitude of drug structures, and being the building unit of DNA and RNA makes it an attractive scaffold for the design and development of anticancer drugs. Currently, 22 pyrimidine-containing entities are approved for clinical use as anticancer drugs by the FDA. An exhaustive literature search indicates several publications and more than 59 patents from the year 2009 onwards on pyrimidine derivatives exhibiting potent antiproliferative activity. These pyrimidine derivatives exert their activity via diverse mechanisms, one of them being inhibition of protein kinases. Aurora kinase (AURK) and polo-like kinase (PLK) are protein kinases involved in the regulation of the cell cycle. Within the numerous pyrimidine-based small molecules developed as anticancer agents, this review focuses on the pyrimidine fused heterocyclic compounds modulating the AURK and PLK proteins in different phases of clinical trials as anticancer agents. This article aims to provide a comprehensive overview of synthetic strategies for the preparation of pyrimidine derivatives and their associated biological activity on AURK/PLK. It will also present an overview of the synthesis of the heterocyclic-2-aminopyrimidine, 4-aminopyrimidine and 2,4-diaminopyrimidine scaffolds, and one of the pharmacophores in AURK/PLK inhibitors is described systematically.


Assuntos
Aurora Quinases/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Pirimidinas/síntese química , Pirimidinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Ciclo Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Quinase 1 Polo-Like
16.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064806

RESUMO

Compounds bearing thiazole and chalcone pharmacophores have been reported to possess excellent antitubercular and anticancer activities. In view of this, we designed, synthesized and characterized a novel series of thiazole-chalcone hybrids (1-20) and further evaluated them for antitubercular and antiproliferative activities by employing standard protocols. Among the twenty compounds, chalcones 12 and 7, containing 2,4-difluorophenyl and 2,4-dichlorophenyl groups, showed potential antitubercular activity higher than the standard pyrazinamide (MIC = 25.34 µM) with MICs of 2.43 and 4.41 µM, respectively. Chalcone 20 containing heteroaryl 2-thiazolyl moiety exhibited promising antiproliferative activity against the prostate cancer cell line (DU-145), higher than the standard methotrexate (IC50 = 11 ± 1 µM) with an IC50 value of 6.86 ± 1 µM. Furthermore, cytotoxicity studies of these compounds against normal human liver cell lines (L02) revealed that the target molecules were comparatively less selective against L02. Additional computational studies using AutoDock predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compounds generated through this study, create a way for the optimization and development of novel drugs against tuberculosis infections and prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Chalconas/farmacologia , Chalconas/farmacocinética , Desenho de Fármacos , Simulação de Acoplamento Molecular , Tiazóis/farmacologia , Tiazóis/farmacocinética , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antituberculosos/síntese química , Antituberculosos/química , Antituberculosos/farmacocinética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Chalconas/síntese química , Chalconas/química , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tiazóis/síntese química , Tiazóis/química
17.
Polymers (Basel) ; 13(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33805240

RESUMO

The non-toxic inorganic antimicrobial agents iodine (I2) and copper (Cu) are interesting alternatives for biocidal applications. Iodine is broad-spectrum antimicrobial agent but its use is overshadowed by compound instability, uncontrolled iodine release and short-term effectiveness. These disadvantages can be reduced by forming complex-stabilized, polymeric polyiodides. In a facile, in-vitro synthesis we prepared the copper-pentaiodide complex [Cu(H2O)6(12-crown-4)5]I6 · 2I2, investigated its structure and antimicrobial properties. The chemical structure of the compound has been verified. We used agar well and disc-diffusion method assays against nine microbial reference strains in comparison to common antibiotics. The stable complex revealed excellent inhibition zones against C. albicans WDCM 00054, and strong antibacterial activities against several pathogens. [Cu(H2O)6(12-crown-4)5]I6 · 2I2 is a strong antimicrobial agent with an interesting crystal structure consisting of complexes located on an inversion center and surrounded by six 12-crown-4 molecules forming a cationic substructure. The six 12-crown-4 molecules form hydrogen bonds with the central Cu(H2O)6. The anionic substructure is a halogen bonded polymer which is formed by formal I5- repetition units. The topology of this chain-type polyiodide is unique. The I5- repetition units can be understood as a triodide anion connected to two iodine molecules.

18.
Eur J Med Chem ; 219: 113442, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878562

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is becoming dangerous to human beings due to easy transmission mode and leading to the difficult-to-treat situation. The rapid resistance development of MRSA to many approved antibiotics is of major concern. There is a lot of scope to develop novel, efficient, specific, and nontoxic drug candidates to fight against MRSA isolates. The interesting molecular structure and adaptable feature of oxadiazole moiety which are bioisosteres of esters and amides, and these functional groups show improved resistance to esterases mediated hydrolytic cleavage, attracting researchers to develop required novel antibiotics based on oxadiazole core. This review summarizes the developments of oxadiazole-containing derivatives as potent antibacterial agents against multidrug-resistant MRSA strains and discussing the structure-activity relationship (SAR) in various directions. The current survey is the highlight of the present scenario of oxadiazole hybrids on MRSA studies, covering articles published from 2011 to 2020. This collective information may become a good platform to plan and develop new oxadiazole-based small molecule growth inhibitors of MRSA with minimal side effects.


Assuntos
Antibacterianos/farmacologia , Oxidiazóis/química , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Desenho de Fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxidiazóis/metabolismo , Oxidiazóis/farmacologia , Relação Estrutura-Atividade
19.
Pharmaceuticals (Basel) ; 13(11)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182305

RESUMO

Despite the availability of many drugs to treat infectious diseases, the problems like narrow antimicrobial spectrum, drug resistance, hypersensitivities and systemic toxicities are hampering their clinical utility. Based on the above facts, in the present study, we designed, synthesized and evaluated the antibacterial and antifungal activity of novel fluorinated compounds comprising of chalcones bearing trifluoromethyl (A1-A10) and trifluoromethoxy (B1-B10) substituents. The compounds were characterized by spectroscopic techniques and evaluated for their antimicrobial activity against four pathogenic Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Bacillus subtilis) bacterial and fungal (Candida albicans and Aspergillus niger) strains. In this study, the compounds with trifluoromethoxy group were more effective than those with trifluoromethyl group. Among the 20 fluorinated chalcones, compound A3/B3 bearing an indole ring attached to the olefinic carbon have been proved to possess the most antimicrobial activity compared to the standard drugs without showing cytotoxicity on human normal liver cell line (L02). Further, the minimum inhibitory concentration (MIC) for A3/B3 was determined by serial tube dilution method and showed potential activity. These results would provide promising access to future study about the development of novel agents against bacterial and fungal infections.

20.
Molecules ; 25(14)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668655

RESUMO

Infectious diseases caused by fungi and mycobacteria pose an important problem for humankind. Similarly, cancer is one of the leading causes of death globally. Therefore, there is an urgent need for the development of novel agents to combat the deadly problems of cancer, tuberculosis, and also fungal infections. Hence, in the present study, we designed, synthesized, and characterized 30 compounds including 15 chalcones (2-16) and 15 dihydropyrazoles (17-31) containing dichlorophenyl moiety and also screened these compounds for their antifungal, antitubercular, and antiproliferative activities. Among these compounds, the dihydropyrazoles showed excellent antifungal and antitubercular activities whereas the chalcones exhibited promising antiproliferative activity. Among the dihydropyrazoles, compound 31 containing 2-thienyl moiety showed promising antifungal activity (MIC 5.35 µM), whereas compounds 22 and 24 containing 2,4-difluorophenyl and 4-trifluoromethyl scaffolds revealed significant antitubercular activity with the MICs of 3.96 and 3.67 µM, respectively. Compound 16 containing 2-thienyl moiety in the chalcone series showed the highest anti-proliferative activity with an IC50 value of 17 ± 1 µM. The most active compounds identified through this study could be considered as starting points in the development of drugs with potential antifungal, antitubercular, and antiproliferative activities.


Assuntos
Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Antituberculosos/farmacologia , Chalconas/farmacologia , Pirazóis/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Antituberculosos/síntese química , Antituberculosos/química , Aspergillus niger/efeitos dos fármacos , Candida tropicalis/efeitos dos fármacos , Linhagem Celular Tumoral , Chalconas/síntese química , Chalconas/química , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA