Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Macro Lett ; 9(11): 1632-1637, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-35617065

RESUMO

A paradigm for enhanced magnetorheological elastic materials is introduced and experimentally established. We show that a nonlinearly stiffening polymer matrix can be exploited to achieve anomalous magneto-elastomer stiffening exceeding standard magneto-elastomer theory and experiment in terms of percentage stiffness change and sensitivity to applied magnetic flux. Using a model system of a semiflexible fibrin network embedded with micron sized carbonyl iron particles, we demonstrate that even at a modest particle volume fraction (0.5-4%), a coupling between the magnetically interacting dipoles and a strain-stiffening polymer mesh provides previously unexplored opportunities for material design. Our experiments indicate that confined particles within the fibrin network internally tension and stiffen the polymer mesh when an external field is applied, resulting in a field-dependent stiffening response from the polymer mesh that superposes with the magnetic interparticle interactions.

2.
Soft Matter ; 13(7): 1430-1443, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28124056

RESUMO

Typical colloid-polymer composites have particle diameters much larger than the polymer mesh size, but successful integration of smaller colloids into a large-mesh network could allow for the realization of new colloidal states of spatial organization and faster colloid motion which can allow the possibility of switchable re-configuration of colloids or more dramatic stimuli-responsive property changes. Experimental realization of such composites requires solving non-trivial materials selection and fabrication challenges; key questions include composition regime maps of successful composites, the resulting structure and colloidal contact network, and the mechanical properties, in particular the ability to form a network and retain strain stiffening in the presence of colloids. Here, we study these fundamental questions by formulating composites with fluorescent (though not stimuli-responsive) carboxylate modified polystyrene/latex (CML) colloidal particles (diameters 200 nm and 1000 nm) in bovine fibrin networks (a semi-flexible biopolymer network with mesh size 1-5 µm). We describe and characterize two methods of composite preparation: adding colloids before fibrinogen polymerization (Method I), and electrophoretically driving colloids into a network already formed by fibrinogen polymerization (Method II). We directly image the morphology of colloidal and fibrous components with two-color fluorescent confocal microscopy under wet conditions and SEM of fixed dry samples. Mechanical properties are studied with shear and extensional rheology. Both fabrication methods are successful, though with trade-offs. Method I retains the nonlinear strain-stiffening and extensibility of the native fibrin network, but some colloid clustering is observed and fibrin network integrity is lost above a critical colloid concentration that depends on fibrinogen and thrombin concentration. Larger colloids can be included at higher volume fractions before massive aggregation occurs, indicating surface interactions as a limiting factor. Method II results in a loss of measurable strain-stiffening, but colloids are well dispersed and template along the fibrous scaffold. The results here, with insight into both structure and rheology, form a foundational understanding for the integration of other colloids, e.g. with stimuli-responsive functionalities, into semi-flexible networks.

3.
Adv Healthc Mater ; 5(19): 2536-2544, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27276521

RESUMO

Cell activity is coordinated by dynamic interactions with the extracellular matrix, often through stimuli-mediated spatiotemporal stiffening and softening. Dynamic changes in mechanics occur in vivo through enzymatic or chemical means, processes which are challenging to reconstruct in cell culture materials. Here a magnetoactive hydrogel material formed by embedding magnetic particles in a hydrogel matrix is presented whereby elasticity can be modulated reversibly by attenuation of a magnetic field. Orders of magnitude change in elasticity using low magnetic fields are shown and reversibility of stiffening with simple permanent magnets is demonstrated. The broad applicability of this technique is demonstrated with two therapeutically relevant bioactivities in mesenchymal stem cells: secretion of proangiogenic molecules, and dynamic control of osteogenesis. The ability to reversibly stiffen cell culture materials across the full spectrum of soft tissue mechanics, using simple materials and commercially available permanent magnets, makes this approach viable for a broad range of laboratory environments.


Assuntos
Hidrogéis/farmacologia , Células-Tronco/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Técnicas de Cultura de Células , Módulo de Elasticidade/efeitos dos fármacos , Elasticidade/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Humanos , Magnetismo/métodos , Teste de Materiais/métodos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA