Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(4): e58449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38765395

RESUMO

Introduction Antimicrobial resistance (AMR) has become a menace, spreading among bacterial species globally. AMR is now recognized as a silent pandemic responsible for treatment failures. Therefore, an effective surveillance mechanism is warranted to understand the bacterial species isolated from human clinical specimens. The present study employed next-generation sequencing (NGS) or whole-genome sequencing (WGS) to identify the resistance and virulence genes, sequence type, and serotypes. Methods This study included 18 multidrug-resistant (MDR) Klebsiella pneumoniae (K. pneumoniae) isolates obtained from patients suffering from different infections attending the Prathima Institute of Medical Sciences, Karimnagar, India. All isolates were identified, and antimicrobial susceptibility profiles were determined through conventional microbiological techniques and confirmed by automated systems. All the isolates were investigated using NGS or WGS to identify the genes coding for resistance, such as extended-spectrum beta-lactamases (ESBLs), metallo-beta-lactamases, and virulence genes. Multilocus sequence typing (MLST) was conducted to identify the sequence types, and Kleborate analysis was performed to confirm the species, genes for AMR, and virulence and evaluate the capsular polysaccharide (KL) and cell wall/lipopolysaccharide (O) serotypes carried by the isolates. Results The mean age of the patients was 46.11±20.35 years. Among the patients included, 12 (66.66%) were males and 6 (33.33%) were females. A high percentage (>50%) of hypervirulent K. pneumoniae (hvKp) strains that had genes coding for AMR and plasmids having the potential to carry blaNDM and resistance genes were observed. Among the isolates, 16 (88.88%) revealed the presence of multiple antibiotic-resistant genes with evidence of at least one gene coding for beta-lactamase resistance. There was a high prevalence of blaSHV (17/18; 94.44%) and blaCTX-M-15 (16/18; 88.88%) AMR genes. Other AMR genes identified included blaTEM (83.33%; 15/18) and blaOXA (14/18; 77.77%). Two (11.11%) strains each showed the presence of blaNDM-1 and blaNDM-5 genes. The virulence genes identified included gapA, infB, mdh, pgi, phoE, rpoB, tonB, and ybt. The most frequent K. pneumoniae serotypes found were KL51:O1v2 (3/18, 16.66%), KL17:O1v1 (3/18, 16.66%), and KL64:O2v1 (3/18, 16.66%). KL64 (4/18; 22.22%) was the most common capsular serotype identified among the isolates. The most frequent MLST-based sequence type (ST) identified included ST-147 (5/18, 27.77%), followed by ST-231 (3/18, 16.66%) and ST-101 (2/18, 11.11%). Conclusions The molecular analysis of K. pneumoniae isolates revealed multiple AMR, plasmid, and virulence genes. Additionally, many global STs were noticed by MLST. The results noted a high prevalence of hvKp strains. Molecular characterization of bacterial strains using NGS/WGS is important to understand the epidemiology of bacterial strains and the antibiotic resistance and virulence genes they are potentially carrying. The data obtained from this study may be utilized to devise careful antibiotic-prescribing approaches and improve patient management practices.

2.
Cureus ; 16(3): e55556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38576671

RESUMO

Introduction An enormous increase in antimicrobial resistance (AMR) among bacteria isolated from human clinical specimens contributed to treatment failures. Increased surveillance through next-generation sequencing (NGS) or whole genome sequencing (WGS) could facilitate the study of the epidemiology of drug-resistant bacterial strains, resistance genes, and other virulence determinants they are potentially carrying. Methods This study included 30 Escherichia coli (E. coli) isolates obtained from patients suffering from urinary tract infections (UTIs) attending Prathima Institute of Medical Sciences, Karimnagar, India. All bacterial isolates were identified, and antimicrobial susceptibility patterns were determined through conventional microbiological techniques and confirmed by automated systems. All the isolates were investigated using NGS to identify genes coding for resistance, such as extended-spectrum beta-lactamases (ESBLs), metallo-beta-lactamases, and virulence genes. Multilocus sequence typing (MLST) was used to understand the prevalent strain types, and serotyping was carried out to evaluate the type of O (cell wall antigen) and H (flagellar antigen) serotypes carried by the isolates. Results The conventional antimicrobial susceptibility testing revealed that 15 (50%) isolates were resistant to imipenem (IPM), 10 (33.33%) were resistant to amikacin (AK), 13 (43.33%) were resistant to piperacillin-tazobactam (PTZ), 17 (56.66%) were resistant to cephalosporins, and 14 (46.66%) were resistant to nitrofurantoin (NIT). Among the isolates, 26 (86.66%) had revealed the presence of multiple antibiotic-resistant genes with evidence of at least one gene coding for beta-lactamase resistance. There was a high prevalence of blaCTX-M (19/30, 63.33%) genes, followed by blaTEM and blaOXA-1. The blaNDM-5 gene was found in three isolates (3/30, 10%). The virulence genes identified in the present study were iutA, sat, iss, and papC, among others. The E. coli serotype found predominantly belonged to O25:H4 (5, 16.66%), followed by O102:H6 (4, 13.33%). A total of 16 MLST variants were identified among the examined samples. Of the MLST-based sequence types (STs) identified, ST-131 (7, 23.33%) was the predominant one, followed by ST-167 (3, 10%) and ST-12 (3, 10%). Conclusions The study results demonstrated that the E. coli strains isolated from patients suffering from UTIs potentially carried antimicrobial resistance and virulence genes and belonged to different strain types based on MLST. Careful evaluation of bacterial strains using molecular analyses such as NGS could facilitate an improved understanding of bacterial antibiotic resistance and its virulence potential. This could enable physicians to choose appropriate antimicrobial agents and contribute to better patient management, thereby preventing the emergence and spread of drug-resistant bacteria.

3.
Cureus ; 14(9): e29575, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36312658

RESUMO

Clinical research is a systematic process of conducting research work to find solutions for human health-related problems. It is applied to understand the disease process and assist in the diagnosis, treatment, and prevention. Currently, we are experiencing global unrest caused by the coronavirus disease (COVID-19) pandemic. The novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) has been responsible for the deaths of more than 50 million people worldwide. Also, it has resulted in severe morbidity among the affected population. The cause of such a huge amount of influence on human health by the pandemic was the unavailability of drugs and therapeutic interventions to treat and manage the disease. Cancer is a disease condition wherein the normal cell function is deranged, and the cells multiply in an uncontrolled manner. Based on recent reports by the World Health Organization (WHO), cancer is the second leading cause of death globally. Moreover, the rates of cancers have shown an increasing trend in the past decade. Therefore, it is essential to improve the understanding concerning clinical research to address the health concerns of humans. In this review, we comprehensively discuss critical aspects of clinical research that include the research question, research objectives, patient-reported outcome measures (PROMs), intention-to-treat and per-protocol analysis, and endpoints in clinical and oncological research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA