Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 193(3): 668-686, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33135129

RESUMO

Natural products are considered to be the lifeline treatment for several diseases where their structural complexity makes them a source of potential lead molecules. As a producer of antibiotics, food colorants, enzymes, and nutritious food, fungi are beneficial to humans. Fungi, as a source of novel natural products, draw attention of scientists. However, redundant isolation of metabolite retards the rate of discovery. So, apart from the standard conditions for the production of secondary metabolites, certain induction strategies are used to trigger biosynthetic genes in fungi. Advancement in the computational tools helps in connecting gene clusters and their metabolite production. Therefore, modern analytical tools and the genomic era in hand leads to the identification of manifold of cryptic metabolites. The cryptic biosynthetic gene cluster (BGC) has become a treasure hunt for new metabolites representing biosynthetic pathways, regulatory mechanisms, and other factors. This review includes the use of chemical inducers/epigenetic modifiers and co-culture (species interaction) techniques to induce these BGCs. Furthermore, it cites a detailed representation of molecules isolated using these strategies. Since the induction occurs on the genomic molecular DNA and histones, this together brings a significant exploration of the biosynthetic pathways.Graphical Abstract.


Assuntos
Aspergillus nidulans/crescimento & desenvolvimento , Vias Biossintéticas , Eurotiales/crescimento & desenvolvimento , Metabolismo Secundário , Aspergillus nidulans/genética , Produtos Biológicos/metabolismo , Técnicas de Cocultura , Eurotiales/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA