Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1398210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253704

RESUMO

The natural environment is often contaminated with hydrophobic pollutants such as long-chain hydrocarbons, petrochemicals, oil spills, pesticides, and heavy metals. Hydrophobic pollutants with a toxic nature, slow degradation rates, and low solubility pose serious threats to the environment and human health. Decontamination based on conventional chemical surfactants has been found to be toxic, thereby limiting its application in pharmaceutical and cosmetic industries. In contrast, biosurfactants synthesized by various microbial species have been considered superior to chemical counterparts due to their non-toxic and economical nature. Some biosurfactants can withstand a wide range of fluctuations in temperature and pH. Recently, biosurfactants have emerged as innovative biomolecules not only for solubilization but also for the biodegradation of environmental pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and oil spills. Biosurfactants have been well documented to function as emulsifiers, dispersion stabilizers, and wetting agents. The amphiphilic nature of biosurfactants has the potential to enhance the solubility of hydrophobic pollutants such as petroleum hydrocarbons and oil spills by reducing interfacial surface tension after distribution in two immiscible surfaces. However, the remediation of contaminants using biosurfactants is affected considerably by temperature, pH, media composition, stirring rate, and microorganisms selected for biosurfactant production. The present review has briefly discussed the current advancements in microbially synthesized biosurfactants, factors affecting production, and their application in the remediation of environmental contaminants of a hydrophobic nature. In addition, the latest aspect of the circular bioeconomy is discussed in terms of generating biosurfactants from waste and the global economic aspects of biosurfactant production.

2.
Plants (Basel) ; 12(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447041

RESUMO

The considerable loss of crop productivity each year due to plant disease or pathogen invasion during pre- or post-harvest storage conditions is one of the most severe challenges to achieving the goals of food security for the rising global population. Although chemical pesticides severally affect the food quality and health of consumers, a large population relies on them for plant disease management. But currently, endophytes have been considered one of the most suitable biocontrol agents due to better colonization and acclimatization potential. However, a very limited number of endophytes have been used commercially as biocontrol agents. Isolation of endophytes and their screening to represent potential characteristics as biocontrol agents are considered challenging by different procedures. Through a web search using the keywords "endophytes as biocontrol agents" or "biocontrol mechanism of endophytes," we have succinctly summarised the isolation strategies and different in vitro and in vivo biocontrol screening methods of endophytic biocontrol agents in the present review. In this paper, biocontrol mechanisms of endophytes and their potential application in plant disease management have also been discussed. Furthermore, the registration and regulatory mechanism of the endophytic biocontrol agents are also covered.

3.
Plants (Basel) ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36559563

RESUMO

Plants host diverse microbial communities, which undergo a complex interaction with each other. Plant-associated microbial communities provide various benefits to the host directly or indirectly, viz. nutrient acquisition, protection from pathogen invaders, mitigation from different biotic and abiotic stress. Presently, plant-associated microbial strains are frequently utilized as biofertilizers, biostimulants and biocontrol agents in greenhouse and field conditions and have shown satisfactory results. Nowadays, the plant/fruit microbiome has been employed to control postharvest pathogens and postharvest decay, and to maintain the quality or shelf life of fruits. In this context, the intervention of the natural fruit microbiome or the creation of synthetic microbial communities to modulate the functional attributes of the natural microbiome is an emerging aspect. In this regard, we discuss the community behavior of microbes in natural conditions and how the microbiome intervention plays a crucial role in the postharvest management of fruits.

4.
Plants (Basel) ; 11(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36079585

RESUMO

Plants interact with diverse microbial communities and share complex relationships with each other. The intimate association between microbes and their host mutually benefit each other and provide stability against various biotic and abiotic stresses to plants. Endophytes are heterogeneous groups of microbes that live inside the host tissue without showing any apparent sign of infection. However, their functional attributes such as nutrient acquisition, phytohormone modulation, synthesis of bioactive compounds, and antioxidant enzymes of endophytes are similar to the other rhizospheric microorganisms. Nevertheless, their higher colonization efficacy and stability against abiotic stress make them superior to other microorganisms. In recent studies, the potential role of endophytes in bioprospecting has been broadly reported. However, the molecular aspect of host-endophyte interactions is still unclear. In this study, we have briefly discussed the endophyte biology, colonization efficacy and diversity pattern of endophytes. In addition, it also summarizes the molecular aspect of plant-endophyte interaction in biotic stress management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA