Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Water Resour Assoc ; 57(3): 493-504, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35450168

RESUMO

Hydraulic conductivity (K) is a key hydrologic parameter widely recognized to be difficult to estimate and constrain, with little consistent assessment in disturbed, urbanized soils. To estimate K, it is either measured, or simulated by pedotransfer functions, which relate K to easily measured soil properties. We measured K in urbanized soils by double-ring infiltrometer (K dring), near-saturated tension infiltrometry (K minidisk), and constant head borehole permeametry (K borehole), along with other soil properties across the major soil orders in 12 United States cities. We compared measured K with that predicted from the pedotransfer function, ROSETTA. We found that regardless of soil texture, K dring was consistently larger than K minidisk; with the latter having slightly less sample variance. K borehole was dependent upon specific subsurface conditions, and contrary to common expectations, did not always decrease with depth. Based on either soil textural class, or percent textural separates (sand, silt clay), ROSETTA did not accurately predict measured K for surface nor subsurface soils. We go on to discuss how K varies in urban landscapes, the role of measurement methods and artifacts in the perception of this metric, and implications for hydrologic modeling. Overall, we aim to inspire consistency and coherence when addressing K-related challenges in sustainable urban water management.

2.
Hydrol Process ; 34(2): 387-403, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32063664

RESUMO

Green stormwater infrastructure implementation in urban watersheds has outpaced our understanding of practice effectiveness on streamflow response to precipitation events. Long-term monitoring of experimental suburban watersheds in Clarksburg, Maryland, USA, provided an opportunity to examine changes in event-based streamflow metrics in two treatment watersheds that transitioned from agriculture to suburban development with a high density of infiltration-focused stormwater control measures (SCMs). Urban Treatment 1 has predominantly single family detached housing with 33% impervious cover and 126 SCMs. Urban Treatment 2 has a mix of single family detached and attached housing with 44% impervious cover and 219 SCMs. Differences in streamflow-event magnitude and timing were assessed using a before-after-control-reference-impact design to compare urban treatment watersheds with a forested control and an urban control with detention-focused SCMs. Streamflow and precipitation events were identified from 14 years of sub-daily monitoring data with an automated approach to characterize peak streamflow, runoff yield, runoff ratio, streamflow duration, time to peak, rise rate, and precipitation depth for each event. Results indicated that streamflow magnitude and timing were altered by urbanization in the urban treatment watersheds, even with SCMs treating 100% of the impervious area. The largest hydrologic changes were observed in streamflow magnitude metrics, with greater hydrologic change in Urban Treatment 2 compared with Urban Treatment 1. Although streamflow changes were observed in both urban treatment watersheds, SCMs were able to mitigate peak flows and runoff volumes compared with the urban control. The urban control had similar impervious cover to Urban Treatment 2, but Urban Treatment 2 had more than twice the precipitation depth needed to initiate a flow response and lower median peak flow and runoff yield for events less than 20 mm. Differences in impervious cover between the Urban Treatment watersheds appeared to be a large driver of differences in streamflow response, rather than SCM density. Overall, use of infiltration-focused SCMs implemented at a watershed-scale did provide enhanced attenuation of peak flow and runoff volumes compared to centralized-detention SCMs.

3.
Hydrol Process ; 33(26): 3349-3363, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-32831472

RESUMO

Uncontrolled overland flow drives flooding, erosion, and contaminant transport, with the severity of these outcomes often amplified in urban areas. In pervious media such as urban soils, overland flow is initiated via either infiltration-excess (where precipitation rate exceeds infiltration capacity) or saturation-excess (when precipitation volume exceeds soil profile storage) mechanisms. These processes call for different management strategies, making it important for municipalities to discern between them. In this study, we derived a generalized one-dimensional model that distinguishes between infiltration-excess overland flow (IEOF) and saturation-excess overland flow (SEOF) using Green-Ampt infiltration concepts. Next, we applied this model to estimate overland flow generation from pervious areas in 11 U.S. cities. We used rainfall forcing that represented low- and high-intensity events and compared responses among measured urban versus predevelopment reference soil hydraulic properties. The derivation showed that the propensity for IEOF versus SEOF is related to the equivalence between two nondimensional ratios: (a) precipitation rate to depth-weighted hydraulic conductivity and (b) depth of soil profile restrictive layer to soil capillary potential. Across all cities, reference soil profiles were associated with greater IEOF for the high-intensity set of storms, and urbanized soil profiles tended towards production of SEOF during the lower intensity set of storms. Urban soils produced more cumulative overland flow as a fraction of cumulative precipitation than did reference soils, particularly under conditions associated with SEOF. These results will assist cities in identifying the type and extent of interventions needed to manage storm water produced from pervious areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA