Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res A ; 109(7): 1183-1195, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32985789

RESUMO

Promising biomaterials should be tested in appropriate large animal models that recapitulate human inflammatory and regenerative responses. Previous studies have shown tyrosine-derived polycarbonates (TyrPC) are versatile biomaterials with a wide range of applications across multiple disciplines. The library of TyrPC has been well studied and consists of thousands of polymer compositions with tunable mechanical characteristics and degradation and resorption rates that are useful for nerve guidance tubes (NGTs). NGTs made of different TyrPCs have been used in segmental nerve defect models in small animals. The current study is an extension of this work and evaluates NGTs made using two different TyrPC compositions in a 1 cm porcine peripheral nerve repair model. We first evaluated a nondegradable TyrPC formulation, demonstrating proof-of-concept chronic regenerative efficacy up to 6 months with similar nerve/muscle electrophysiology and morphometry to the autograft repair control. Next, we characterized the acute regenerative response using a degradable TyrPC formulation. After 2 weeks in vivo, TyrPC NGT promoted greater deposition of pro-regenerative extracellular matrix (ECM) constituents (in particular collagen I, collagen III, collagen IV, laminin, and fibronectin) compared to commercially available collagen-based NGTs. This corresponded with dense Schwann cell infiltration and axon extension across the lumen. These findings confirmed results reported previously in a mouse model and reveal that TyrPC NGTs were well tolerated in swine and facilitated host axon regeneration and Schwann cell infiltration in the acute phase across segmental defects - likely by eliciting a favorable neurotrophic ECM milieu. This regenerative response ultimately can contribute to functional recovery.


Assuntos
Regeneração Tecidual Guiada/métodos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Cimento de Policarboxilato/química , Alicerces Teciduais/química , Tirosina/química , Animais , Matriz Extracelular/metabolismo , Nervo Fibular/lesões , Nervo Fibular/metabolismo , Nervo Fibular/fisiologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Suínos
2.
Int J Mol Sci ; 18(5)2017 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-28531139

RESUMO

Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Regeneração Nervosa/fisiologia , Peptídeos/química , Nervo Isquiático/fisiologia , Tecido Adiposo/citologia , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Humanos , Hidrogéis/química , Isoleucina/análogos & derivados , Isoleucina/química , Anidridos Maleicos/química , Morfolinas/química , Cimento de Policarboxilato/química , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/cirurgia , Resistência ao Cisalhamento , Células-Tronco , Tirosina/química
3.
J Mater Sci Mater Med ; 28(5): 79, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28389905

RESUMO

Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repair, as a tissue sealant, filler and drug-delivery matrix. Here, we compared the performance of FG to an alternative, hyaluronic acid (HA) as a coating for porous conduits, using uncoated porous conduits and reverse autografts as control groups. The uncoated conduit walls had pores with a diameter of 60 to 70 µm that were uniformly covered by either FG or HA coatings. In vitro, FG coatings degraded twice as fast as HA coatings. In vivo studies in a 1 cm rat sciatic nerve model showed FG coating resulted in poor axonal density (993 ± 854 #/mm2), negligible fascicular area (0.03 ± 0.04 mm2), minimal percent wet muscle mass recovery (16 ± 1 in gastrocnemius and 15 ± 5 in tibialis anterior) and G-ratio (0.73 ± 0.01). Histology of FG-coated conduits showed excessive fibrous tissue infiltration inside the lumen, and fibrin capsule formation around the conduit. Although FG has been shown to promote nerve regeneration in non-porous conduits, we found that as a coating for porous conduits in vivo, FG encourages scar tissue infiltration that impedes nerve regeneration. This is a significant finding considering the widespread use of FG in peripheral nerve repair.


Assuntos
Materiais Biocompatíveis , Adesivo Tecidual de Fibrina/química , Ácido Hialurônico/química , Regeneração Nervosa , Nervo Isquiático/metabolismo , Animais , Força Compressiva , Reagentes de Ligações Cruzadas/química , Sistemas de Liberação de Medicamentos , Feminino , Hidrogéis/química , Microscopia Eletrônica de Varredura , Músculo Esquelético/metabolismo , Polímeros/química , Porosidade , Ratos , Ratos Endogâmicos Lew , Estresse Mecânico
4.
Macromol Mater Eng ; 301(10): 1211-1224, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28280451

RESUMO

The effects of ethylene oxide (EO), vaporized hydrogen peroxide (VHP), gamma (γ) radiation, and electron-beam (E-beam) on the physiochemical and morphological properties of medical device polymers are investigated. Polymers with ether, carbonate, carboxylic acid, amide and ester functionalities are selected from a family of poly(ethylene glycol) (PEG) containing tyrosine-derived polycarbonates (TyrPCs) to include slow, medium, fast, and ultrafast degrading polymers. Poly(lactic acid) (PLA) is used for comparison. Molecular weight (Mw) of all tested polymers decreases upon gamma and E-beam, and this effect becomes more pronounced at higher PEG content. Gamma sterilization increases the glass transition temperature of polymers with high PEG content. EO esterifies the carboxylic acid groups in desaminotyrosol-tyrosine (DT) and causes significant degradation. VHP causes hydroxylation of the phenyl ring, and hydrolytic degradation. This study signifies the importance of the chemical composition when selecting a sterilization method, and provides suggested conditions for each of the sterilization methods.

5.
J Mater Chem B ; 3(26): 5210-5219, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32262596

RESUMO

A mechanical stimulus and chemical induction by dexamethasone have been important factors in dental pulp stem cell (DPSC) differentiation and biomineralization. We have demonstrated that the enzymatically crosslinked gelatin hydrogels are extremely effective substrates for DPSC differentiation towards odontoblasts. DPSCs were seeded on the crosslinked hard (∼8 kPa) and soft (∼0.15 kPa) gelatin hydrogels for 35 days with and without dexamethasone. Odontogenic differentiation markers such as OCN, ALP and DSPP were upregulated after 35 days of culture on crosslinked hydrogels with and without dexamethasone. SEM and Alizarin red staining of the crosslinked hydrogels showed a biomineralized sheet of hydroxyapatite deposits laid by the DPSCs on the top surface and inside the hydrogel. We found that the DPSC differentiation and biomineralization were independent of the hydrogel stiffness and dexamethasone. We hypothesize that this biomineralization was indeed triggered by the surface chemistry of the crosslinked gelatin hydrogels since we did not observe any biomineralization on the uncrosslinked gelatin or mTG. We also showed that the DPSCs, when removed from hard hydrogel surfaces and re-seeded on a TCPS, retained their odontogenic lineage and showed a permanent mineralization effect. Our results show the potential of enzymatically crosslinked gelatin hydrogels as scaffolds for dentin regeneration.

6.
Skin Res Technol ; 19(3): 220-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23565582

RESUMO

BACKGROUND: Use of Botulinum toxin type A (BTX-A) for facial wrinkles is well-documented, but current methods of subjective evaluation by clinicians and patients fail to objectively quantify the magnitude and duration of facial muscle paralysis. OBJECTIVE: (a) Determine the locus of facial muscular tension; (b) Quantify and monitor muscular paralysis and subsequent return; (c) Continuously correlate the appearance of wrinkles and muscular tension using non-invasive digital image speckle correlation (DISC) to measure treatment efficacy; (d) Corroborate objective data with existing rating scales (subject global assessment and facial lines outcome-11). METHODS: Two sequential images of slight facial motion (frowning, raising eyebrows) are taken with a camera for n = 6 patients pre- and post-treatment at different time points up to 24 weeks. DISC processes the images to produce a vector map of muscular displacement to obtain spatially resolved information regarding facial tension. RESULTS: We observed maximum paralysis (≥70%) at 2 weeks, and the rate of recovery varied widely ranging from 2 to 5 months, with two patients continuing to exhibit reduced contraction at 24 weeks. Vector analysis of pre-treatment contraction correctly predicted injection site and illustrated lines of maximum tension. CONCLUSIONS: Digital image speckle correlation can precisely track the degree of contraction of different muscle groups following BTX-A injection. It can help predict injection site, quantify muscle paralysis, and monitor the recovery following BTX-A injection. Results were found to be reproducible across six patients.


Assuntos
Toxinas Botulínicas Tipo A/administração & dosagem , Dermoscopia/métodos , Músculos Faciais/anatomia & histologia , Músculos Faciais/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos , Pele/anatomia & histologia , Pele/efeitos dos fármacos , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Injeções Intramusculares , Pessoa de Meia-Idade , Fármacos Neuromusculares/administração & dosagem , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Estatística como Assunto , Técnica de Subtração , Resultado do Tratamento
7.
J Invest Dermatol ; 133(10): 2471-2479, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23594599

RESUMO

En masse cell migration is more relevant compared with single-cell migration in physiological processes of tissue formation, such as embryogenesis, morphogenesis, and wound healing. In these situations, cells are influenced by the proximity of other cells including interactions facilitated by substrate mechanics. Here, we found that when fibroblasts migrated en masse over a hydrogel, they established a well-defined deformation field by traction forces and migrated along a trajectory defined by field gradients. The mechanics of the hydrogel determined the magnitude of the gradient. For materials stiff enough to withstand deformation related to cellular traction forces, such patterns did not form. Furthermore, migration patterns functioned poorly on very soft matrices where only a minimal traction gradient could be established. The largest degree of alignment and migration velocity occurred on the gels with the largest gradients. Granulation tissue formation in punch wounds of juvenile pigs was correlated strongly with the modulus of the implanted gel, in agreement with in vitro en masse cell migration studies. These findings provide basic insight into the biomechanical influences on fibroblast movement in early wounds and relevant design criteria for the development of tissue-engineered constructs that aim to stimulate en masse cell recruitment for rapid wound healing.


Assuntos
Movimento Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Cicatrização/fisiologia , Adulto , Contagem de Células , Matriz Extracelular/fisiologia , Feminino , Tecido de Granulação/fisiologia , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Cultura Primária de Células , Sefarose , Engenharia Tecidual/métodos
8.
Ann Plast Surg ; 69(4): 462-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22868307

RESUMO

Dermal substitutes are currently used in plastic surgery to cover various soft tissue defects caused by trauma, burns, or ablative cancer surgery. Little information is available on the biomechanical properties of these dermal substitutes after adequate incorporation as compared to normal skin. Determining parameters such as tensile strength in these skin substitutes will help us further understand their wound healing properties and potential in developing artificial tissue constructs. We hypothesize that a dermal substitute has a lower stress-strain curve and altered stress-induced deformation quantified with tensiometry and digital image speckle correlation (DISC) analysis. Two separate 5×10-cm full-thickness wounds were created on the dorsum of 3 female swine. Fibrin glue was applied before either a full-thickness skin graft (FTSG) or application of artificial dermal matrix. On day 42, cultured autologous keratinocytes were applied as a cell sheet to the wound covered with Integra. On day 56, the wounds were fully excised and fresh tissue specimens, including normal skin, were stored in a physiological solution and prepared for analysis. Rectangular samples were excised from the center of each specimen measuring 4×4×30 mm. Using a tensiometer and DISC analysis, we evaluated the tensile strength of 3 different groups of skin, namely, normal, FTSG, and Integra. There is a significant difference between the Integra specimen when compared to normal skin and FTSG. We found a minimal difference in the stress-strain curves of the latter two. Integra alone shows plastic deformation with continued stretching before ultimate midline fracture. There is significant change between the Young's moduli of the normal skin and the Integra, whereas there is little difference between the FTSG and the normal skin; DISC confirms this analysis. The normal skin and FTSG show a convergence of vectors to a linear plane, whereas Integra shows very little organization. Using 2 different methods of analysis, we have shown a dermal substitute does not display similar biomechanical properties after adequate incorporation. These major tensile strength differences are shown between normal, grafted, and Integra constructs under physiological conditions. These properties will lead to further understanding of artificial tissue and engineered constructs in laboratory and clinical applications.


Assuntos
Sulfatos de Condroitina , Colágeno , Transplante de Pele , Pele Artificial , Resistência à Tração , Animais , Fenômenos Biomecânicos , Feminino , Distribuição Aleatória , Suínos
9.
Chem Pharm Bull (Tokyo) ; 58(10): 1320-3, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20930397

RESUMO

An environment friendly method for the synthesis of 2-oxo/thioxooctahydroquinazolin-5-one derivatives has been devised using Ceric ammonium nitrate (CAN) as catalyst and polyethylene glycol (PEG) as solvent. The cytotoxic effect of these compounds was studied on U87 human glioma cells, compounds 4c, 4d and 4e are found to exhibit excellent activity at a concentration as low as 0.06 µg/ml.


Assuntos
Antineoplásicos/síntese química , Quinazolinonas/química , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Neoplasias Encefálicas/tratamento farmacológico , Catálise , Linhagem Celular Tumoral , Cério/química , Humanos , Polietilenoglicóis/química , Quinazolinonas/síntese química , Quinazolinonas/uso terapêutico , Quinazolinonas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA