Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(2): e0277537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36787288

RESUMO

Assessing the genetic diversity of yam germplasm from different geographical origins for cultivation and breeding purposes is an essential step for crop genetic resource conservation and genetic improvement, especially where the crop faces minimal attention. This study aimed to classify the population structure, and assess the extent of genetic diversity in 207 Dioscorea rotundata genotypes sourced from three different geographical origins. A total of 4,957 (16.2%) single nucleotide polymorphism markers were used to assess genetic diversity. The SNP markers were informative, with polymorphic information content ranging from 0.238 to 0.288 and a mean of 0.260 across all the genotypes. The observed and expected heterozygosity was 0.12 and 0.23, respectively while the minor allele frequency ranged from 0.093 to 0.124 with a mean of 0.109. The principal coordinate analysis, model-based structure and discriminant analysis of principal components, and the Euclidean distance matrix method grouped 207 yam genotypes into three main clusters. Genotypes from West Africa (Ghana and Nigeria) had significant similarities with those from Uganda. Analysis of molecular variance revealed that within-population variation across three different geographical origins accounted for 93% of the observed variation. This study, therefore, showed that yam improvement in Uganda is possible, and the outcome will constitute a foundation for the genetic improvement of yams in Uganda.


Assuntos
Dioscorea , Dioscorea/genética , Filogenia , Variação Genética , Uganda , Melhoramento Vegetal , Gana
2.
Foods ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765972

RESUMO

Natural and social science studies have commonly referenced a 'typical' or 'habitual' Nigerian diet, without defining what such a diet entails. Our study, based on a systematic review of the existing literature and an analysis of household-level survey data, describes the general outline of a common Nigerian diet and how it varies based on spatial, demographic, and socio-economic characteristics. We further try to establish whether Nigeria has embarked on a dietary transition common in most modern economies, marked by a greater consumption of processed foods, fats, and sugar at the expense of traditional whole cereals and pulses. We conclude that while a traditional Nigerian diet is still relatively healthy from an international perspective, it has indeed been transitioning, with an increasing inclusion of high-energy, high-fat, and high-sugar processed foods and a related growing incidence of overweight, obesity, and diet-related non-communicable diseases.

3.
Front Plant Sci ; 13: 1035549, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531382

RESUMO

Taro leaf blight caused by Phytophthora colocasiae adversely affects the growth and yield of taro. The management of this disease depends heavily on synthetic fungicides. These compounds, however, pose potential hazards to human health and the environment. The present study aimed to investigate an alternative approach for plant growth promotion and disease control by evaluating seven different bacterial strains (viz., Serratia plymuthica, S412; S. plymuthica, S414; S. plymuthica, AS13; S. proteamaculans, S4; S. rubidaea, EV23; S. rubidaea, AV10; Pseudomonas fluorescens, SLU-99) and their different combinations as consortia against P. colocasiae. Antagonistic tests were performed in in vitro plate assays and the effective strains were selected for detached leaf assays and greenhouse trials. Plant growth-promoting and disease prevention traits of selected bacterial strains were also investigated in vitro. Our results indicated that some of these strains used singly (AV10, AS13, S4, and S414) and in combinations (S4+S414, AS13+AV10) reduced the growth of P. colocasiae (30-50%) in vitro and showed disease reduction ability when used singly or in combinations as consortia in greenhouse trials (88.75-99.37%). The disease-suppressing ability of these strains may be related to the production of enzymes such as chitinase, protease, cellulase, and amylase. Furthermore, all strains tested possessed plant growth-promoting traits such as indole-3-acetic acid production, siderophore formation, and phosphate solubilization. Overall, the present study revealed that bacterial strains significantly suppressed P. colocasiae disease development using in vitro, detached leaf, and greenhouse assays. Therefore, these bacterial strains can be used as an alternative strategy to minimize the use of synthetic fungicides and fertilizers to control taro blight and improve sustainable taro production.

4.
Nat Commun ; 13(1): 2001, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35422045

RESUMO

The nutrient-rich tubers of the greater yam, Dioscorea alata L., provide food and income security for millions of people around the world. Despite its global importance, however, greater yam remains an orphan crop. Here, we address this resource gap by presenting a highly contiguous chromosome-scale genome assembly of D. alata combined with a dense genetic map derived from African breeding populations. The genome sequence reveals an ancient allotetraploidization in the Dioscorea lineage, followed by extensive genome-wide reorganization. Using the genomic tools, we find quantitative trait loci for resistance to anthracnose, a damaging fungal pathogen of yam, and several tuber quality traits. Genomic analysis of breeding lines reveals both extensive inbreeding as well as regions of extensive heterozygosity that may represent interspecific introgression during domestication. These tools and insights will enable yam breeders to unlock the potential of this staple crop and take full advantage of its adaptability to varied environments.


Assuntos
Dioscorea , Cromossomos , Dioscorea/genética , Humanos , Melhoramento Vegetal , Tubérculos , Locos de Características Quantitativas/genética
5.
Data Brief ; 42: 108041, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35341032

RESUMO

Biochemical characterisation of germplasm collections and crop wild relatives (CWRs) facilitates the assessment of biological potential and the selection of breeding lines for crop improvement. Data from the biochemical characterisation of staple root, tuber and banana (RTB) crops, i.e. banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas) and yam (Dioscorea spp.), using a metabolomics approach is presented. The data support the previously published research article "Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops" (Price et al., 2020) [1]. Diversity panels for each crop, which included a variety of species, accessions, landraces and CWRs, were characterised. The biochemical profile for potato was based on five elite lines under abiotic stress. Metabolites were extracted from the tissue of foliage and storage organs (tuber, root and banana pulp) via solvent partition. Extracts were analysed via a combination of liquid chromatography - mass spectrometry (LC-MS), gas chromatography (GC)-MS, high pressure liquid chromatography with photodiode array detector (HPLC-PDA) and ultra performance liquid chromatography (UPLC)-PDA. Metabolites were identified by mass spectral matching to in-house libraries comprised from authentic standards and comparison to databases or previously published literature.

6.
Genes (Basel) ; 13(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205389

RESUMO

Anthracnose disease caused by a fungus Colletotrichum gloeosporioides is the primary cause of yield loss in water yam (Dioscorea alata), the widely cultivated species of yam. Resistance to yam anthracnose disease (YAD) is a prime target in breeding initiatives to develop durable-resistant cultivars for sustainable management of the disease in water yam cultivation. This study aimed at tagging quantitative trait loci (QTL) for anthracnose disease resistance in a bi-parental mapping population of D. alata. Parent genotypes and their recombinant progenies were genotyped using the Genotyping by Sequencing (GBS) platform and phenotyped in two crop cycles for two years. A high-density genetic linkage map was built with 3184 polymorphic Single Nucleotide Polymorphism (NSP) markers well distributed across the genome, covering 1460.94 cM total length. On average, 163 SNP markers were mapped per chromosome with 0.58 genetic distances between SNPs. Four QTL regions related to yam anthracnose disease resistance were identified on three chromosomes. The proportion of phenotypic variance explained by these QTLs ranged from 29.54 to 39.40%. The QTL regions identified showed genes that code for known plant defense responses such as GDSL-like Lipase/Acylhydrolase, Protein kinase domain, and F-box protein. The results from the present study provide valuable insight into the genetic architecture of anthracnose resistance in water yam. The candidate markers identified herewith form a relevant resource to apply marker-assisted selection as an alternative to a conventional labor-intensive screening for anthracnose resistance in water yam.


Assuntos
Dioscorea , Locos de Características Quantitativas , Dioscorea/genética , Resistência à Doença/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Água
7.
Plants (Basel) ; 9(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751829

RESUMO

Yam (Dioscorea spp.) is a nutritional and medicinal staple tuber crop grown in the tropics and sub-tropics. Among the food yam species, water yam (Dioscorea alata L.) is the most widely distributed and cultivated species worldwide. Tuber dry matter content (DMC) and oxidative browning (OxB) are important quality attributes that determine cultivar acceptability in water yam. This study used a single nucleotide polymorphism (SNP) assay from a diversity arrays technology (DArT) platform for a genome-wide association study (GWAS) of the two quality traits in a panel of 100 water yam clones grown in three environments. The marker-trait association analysis identified significant SNPs associated with tuber DMC on chromosomes 6 and 19 and with OxB on chromosome 5. The significant SNPs cumulatively explained 45.87 and 12.74% of the total phenotypic variation for the tuber DMC and OxB, respectively. Gene annotation for the significant SNP loci identified important genes associated in the process of the proteolytic modification of carbohydrates in the dry matter accumulation pathway as well as fatty acid ß-oxidation in peroxisome for enzymatic oxidation. Additional putative genes were also identified in the peak SNP sites for both tuber dry matter and enzymatic oxidation with unknown functions. The results of this study provide valuable insight for further dissection of the genetic architecture of tuber dry matter and enzymatic oxidation in water yam. They also highlight SNP variants and genes useful for genomics-informed selection decisions in the breeding process for improving food quality traits in water yam.

8.
Ann Bot ; 126(6): 1029-1038, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32592585

RESUMO

BACKGROUND AND AIMS: Inferring the diffusion history of many human-dispersed species is still not straightforward due to unresolved past human migrations. The centre of diversification and routes of migration of the autopolyploid and clonally propagated greater yam, Dioscorea alata, one of the oldest edible tubers, remain unclear. Here, we address yam demographic and dispersal history using a worldwide sample. METHODS: We characterized genome-wide patterns of genetic variation using genotyping by sequencing 643 greater yam accessions spanning four continents. First, we disentangled the polyploid and clonal components of yam diversity using allele frequency distribution and identity by descent approaches. We then addressed yam geographical origin and diffusion history with a model-based coalescent inferential approach. KEY RESULTS: Diploid genotypes were more frequent than triploids and tetraploids worldwide. Genetic diversity was generally low and clonality appeared to be a main factor of diversification. The most likely evolutionary scenario supported an early divergence of mainland Southeast Asian and Pacific gene pools with continuous migration between them. The genetic make-up of triploids and tetraploids suggests that they have originated from these two regions before westward yam migration. The Indian Peninsula gene pool gave origin to the African gene pool, which was later introduced to the Caribbean region. CONCLUSIONS: Our results are congruent with the hypothesis of independent domestication origins of the two main Asian and Pacific gene pools. The low genetic diversity and high clonality observed suggest a strong domestication bottleneck followed by thousands of years of widespread vegetative propagation and polyploidization. Both processes reduced the extent of diversity available for breeding, and this is likely to threaten future adaptation.


Assuntos
Dioscorea , Evolução Biológica , Dioscorea/genética , Genótipo , Humanos , Repetições de Microssatélites , Poliploidia
9.
Plant J ; 101(6): 1258-1268, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31845400

RESUMO

Roots, tubers, and bananas (RTB) are vital staples for food security in the world's poorest nations. A major constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to elucidate the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical measurements have often been overlooked despite metabolite composition being directly associated with agronomic and consumer traits. Here we present a compound database and concentration range for metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-based diversity screening of global collections held within the CGIAR institutes. The dataset including 711 chemical features provides a valuable resource regarding the comparative biochemical composition of each RTB crop and highlights the potential diversity available for incorporation into crop improvement programmes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex compositional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20% of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with the on-going genomic and phenotypic studies will enhance 'omics-wide associations of molecular signatures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery and functional characterization.


Assuntos
Produtos Agrícolas/metabolismo , Bases de Dados como Assunto , Metaboloma , Musa/metabolismo , Melhoramento Vegetal , Raízes de Plantas/metabolismo , Tubérculos/metabolismo , Metabolômica/métodos , Melhoramento Vegetal/métodos
10.
Plants (Basel) ; 8(10)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635283

RESUMO

The flavor and health benefits of coffee (Coffea spp.) are derived from the metabolites that accumulate in the mature bean. However, the chemical profiles of many C. canephora genotypes remain unknown, even as the production of these coffee types increases globally. Therefore, we used Gas Chromatography-Mass Spectrophotometry to determine the chemical composition of C. canephora genotypes in Nigeria-those conserved in germplasm repositories and those cultivated by farmers. GC-MS revealed 340 metabolites in the ripe beans, with 66 metabolites differing (p-value < 0.05) across the represented group. Univariate and multivariate approaches showed that the 'Niaouli' genotypes could be clearly distinguished from 'Kouillou' and 'Java' genotypes, while there was almost no distinction between 'Kouillou' and 'Java,'. Varietal genotyping based on bean metabolite profiling was synchronous with that based on genome-wide Single Nucleotide Polymorphism analysis. Across genotypes, the sucrose-to-caffeine ratio was low, a characteristic indicative of low cup quality. The sucrose-to-caffeine ratio was also highly correlated, indicative of common mechanisms regulating the accumulation of these compounds. Nevertheless, this strong correlative link was broken within the 'Niaouli' group, as caffeine and sucrose content were highly variable among these genotypes. These 'Niaouli' genotypes could therefore serve as useful germplasm for starting a Nigerian C. canephora quality improvement breeding program.

11.
PLoS One ; 14(5): e0216717, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31095626

RESUMO

Plant in vitro vegetative propagation using classical semi-solid culture medium is limited due to the low degree of automation, suboptimal nutrient availability and induced physiological stress which often reduce its efficiency. Temporary Immersion System (TIS) emerged as an innovative approach to optimize and eliminate the drawbacks associated with the conventional system of micropropagation. In this study, both Dioscorea and Musa spp. were subjected to conventional semi-solid culture media, complete immersion in shaking liquid culture media and TIS using RITA bioreactor. In vitro grown plantlets were screened for possible vegetative changes using agro-morphological descriptors while genetic and methylation differences were assessed using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP). In vitro results showed that the number of shoots produced in Musa spp. varied significantly (P≤0.001) with the type of culture system. The highest mean shoot produced was observed with TIS (28.40) and the least using semi-solid culture medium (1.13). For Dioscorea spp., there was no significant interaction between the hormone combination and the culture system. However, the lowest mean shoot value (1.55) was observed in the semi-solid culture medium. Genetic analysis via AFLP using 15 primer pair combinations revealed that the 3 culture systems maintained genetic variation for Musa and Dioscorea spp. under in vitro and field conditions. Results showed 99% and 91% of the total bands were polymorphic under in vitro and field conditions respectively for Musa and 100% polymorphism for Dioscorea under in vitro and field conditions. Methylation investigation via MSAP using 12 primer pair combinations showed 25% and 46% polymorphic methylated-sensitive loci, 100% and 78% of non-methylated loci of the total bands generated under in vitro and field conditions respectively. Unmethylated (HPA+/MSP+) levels were highest in TIS (0.0842) as compared to CI (0.0227) and SS (0.0161) while full methylation or absence of target (HPA-/MSP-) was lowest in TIS (0.5890) and highest in SS (0.7138). For Dioscorea, 52% and 53% methylated sensitive loci and 100% non-methylated loci were polymorphic under in vitro and field conditions respectively. Although in vitro plant tissue culture techniques led to methylation at some loci of both species, there were no observable changes in the phenotype of both crops under field conditions. This also confirmed that not all methylation events lead to phenotypic changes.


Assuntos
Metilação de DNA , Dioscorea/crescimento & desenvolvimento , Dioscorea/genética , Musa/crescimento & desenvolvimento , Musa/genética , Aclimatação/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Dioscorea/fisiologia , Marcadores Genéticos/genética , Genótipo , Musa/fisiologia
12.
PLoS One ; 13(10): e0197717, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303959

RESUMO

Water yam (Dioscorea alata L.) is one of the most important food yams with wide geographical distribution in the tropics. One of the major constraints to water yam production is anthracnose disease caused by a fungus, Colletotrichum gloeosporioides (Penz.). There are no economically feasible solutions as chemical sprays or cultural practices, such as crop rotation are seldom convenient for smallholder farmers for sustainable control of the disease. Breeding for development of durable genetic resistant varieties is known to offer lasting solution to control endemic disease threats to crop production. However, breeding for resistance to anthracnose has been slow considering the biological constraints related to the heterozygous and vegetative propagation of the crop. The development of saturated linkage maps with high marker density, such as SSRs, followed by identification of QTLs can accelerate the speed and precision of resistance breeding in water yam. In a previous study, a total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from two D. alata genotypes. A set of 380 EST-SSRs were validated as polymorphic when tested on two diverse parents targeted for anthracnose disease and were used to generate a saturated linkage map. Majority of the SSRs (60.2%) showed Mendelian segregation pattern and had no effect on the construction of linkage map. All 380 EST-SSRs were mapped into 20 linkage groups, and covered a total length of 3229.5 cM. Majority of the markers were mapped on linkage group 1 (LG 1) comprising of 97 EST-SSRs. This is the first genetic linkage map of water yam constructed using EST-SSRs. QTL localization was based on phenotypic data collected over a 3-year period of inoculating the mapping population with the most virulent strain of C. gloeosporioides from West Africa. Based on threshold LOD scores, one QTL was consistently observed on LG 14 in all the three years and average score data. This QTL was found at position interval of 71.1-84.8 cM explaining 68.5% of the total phenotypic variation in the average score data. The high marker density allowed identification of QTLs and association for anthracnose disease, which could be validated in other mapping populations and used in marker-assisted breeding in D. alata improvement programmes.


Assuntos
Dioscorea/genética , Ligação Genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Colletotrichum/fisiologia , Dioscorea/microbiologia , Resistência à Doença , Etiquetas de Sequências Expressas , Genoma de Planta , Repetições de Microssatélites , Melhoramento Vegetal , Doenças das Plantas/microbiologia
13.
Food Chem ; 259: 130-138, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680035

RESUMO

Screening carotenoids of elite accessions of yam (Dioscorea spp.) used in the global yam breeding program has been conducted to quantitatively determine the carotenoid composition of the crop. Comparisons to previous data reporting cerotenoid levels in yam has been made, in order to deduce greater perspectives across multiple studies. Characterisation of complex species and accession -specific profiles have shown a rich base of diversity that can inform breeding strategies. Key findings include; (i) the identification of accessions rich in ß-carotene which can aid provitamin A biofortification, (ii) Data disputing the commonly held belief that yellow Guinea yam (D. cayennensis) has higher ß-carotene content than that of white Guinea yam (D. rotundata), and (iii) the tentative identification of C25-epoxy-apocarotenoid persicaxanthin with potential implications for tuber dormancy.


Assuntos
Carotenoides/análise , Dioscorea/química , Compostos de Epóxi/análise , Tubérculos/química , beta Caroteno/análise
14.
Metabolomics ; 13(11): 144, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29104519

RESUMO

INTRODUCTION: Ninety-seven percent of yam (Dioscorea spp.) production takes place in low income food deficit countries (LIFDCs) and the crop provides 200 calories a day to approximately 300 million people. Therefore, yams are vital for food security. Yams have high-yield potential and high market value potential yet current breeding of yam is hindered by a lack of genomic information and genetic resources. New tools are needed to modernise breeding strategies and unlock the potential of yam to improve livelihood in LIFDCs. OBJECTIVES: Metabolomic screening has been undertaken on a diverse panel of Dioscorea accessions to assess the utility of the approach for advancing breeding strategies in this understudied crop. METHODS: Polar and lipophilic extracts from tubers of accessions from the global yam breeding program have been comprehensively profiled via gas chromatography-mass spectrometry. RESULTS: A visual pathway representation of the measured yam tuber metabolome has been delivered as a resource for biochemical evaluation of yam germplasm. Over 200 compounds were routinely measured in tubers, providing a major advance for the chemo-typing of this crop. Core biochemical redundancy concealed trends that were only elucidated following detailed mining of global metabolomics data. Combined analysis on leaf and tuber material identified a subset of metabolites which allow accurate species classification and highlighted the potential of predicting tuber composition from leaf profiles. Metabolic variation was accession-specific and often localised to compound classes, which will aid trait-targeting for metabolite markers. CONCLUSIONS: Metabolomics provides a standalone platform with potential to deliver near-future crop gains for yam. The approach compliments the genetic advancements currently underway and integration with other '-omics' studies will deliver a significant advancement to yam breeding strategies.

15.
BMC Biol ; 15(1): 86, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28927400

RESUMO

BACKGROUND: Root and tuber crops are a major food source in tropical Africa. Among these crops are several species in the monocotyledonous genus Dioscorea collectively known as yam, a staple tuber crop that contributes enormously to the subsistence and socio-cultural lives of millions of people, principally in West and Central Africa. Yam cultivation is constrained by several factors, and yam can be considered a neglected "orphan" crop that would benefit from crop improvement efforts. However, the lack of genetic and genomic tools has impeded the improvement of this staple crop. RESULTS: To accelerate marker-assisted breeding of yam, we performed genome analysis of white Guinea yam (Dioscorea rotundata) and assembled a 594-Mb genome, 76.4% of which was distributed among 21 linkage groups. In total, we predicted 26,198 genes. Phylogenetic analyses with 2381 conserved genes revealed that Dioscorea is a unique lineage of monocotyledons distinct from the Poales (rice), Arecales (palm), and Zingiberales (banana). The entire Dioscorea genus is characterized by the occurrence of separate male and female plants (dioecy), a feature that has limited efficient yam breeding. To infer the genetics of sex determination, we performed whole-genome resequencing of bulked segregants (quantitative trait locus sequencing [QTL-seq]) in F1 progeny segregating for male and female plants and identified a genomic region associated with female heterogametic (male = ZZ, female = ZW) sex determination. We further delineated the W locus and used it to develop a molecular marker for sex identification of Guinea yam plants at the seedling stage. CONCLUSIONS: Guinea yam belongs to a unique and highly differentiated clade of monocotyledons. The genome analyses and sex-linked marker development performed in this study should greatly accelerate marker-assisted breeding of Guinea yam. In addition, our QTL-seq approach can be utilized in genetic studies of other outcrossing crops and organisms with highly heterozygous genomes. Genomic analysis of orphan crops such as yam promotes efforts to improve food security and the sustainability of tropical agriculture.


Assuntos
Dioscorea/genética , Genoma de Planta , Biomarcadores/metabolismo , Produtos Agrícolas/genética , Melhoramento Vegetal , Locos de Características Quantitativas , Sequenciamento Completo do Genoma
16.
PLoS One ; 12(3): e0174150, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28355293

RESUMO

Yams (Dioscorea sp.) are staple food crops for millions of people in tropical and subtropical regions. Dioscorea alata, also known as greater yam, is one of the major cultivated species and most widely distributed throughout the tropics. Despite its economic and cultural importance, very little is known about its origin, diversity and genetics. As a consequence, breeding efforts for resistance to its main disease, anthracnose, have been fairly limited. The objective of this study was to contribute to the understanding of D. alata genetic diversity by genotyping 384 accessions from different geographical regions (South Pacific, Asia, Africa and the Caribbean), using 24 microsatellite markers. Diversity structuration was assessed via Principal Coordinate Analysis, UPGMA analysis and the Bayesian approach implemented in STRUCTURE. Our results revealed the existence of a wide genetic diversity and a significant structuring associated with geographic origin, ploidy levels and morpho-agronomic characteristics. Seventeen major groups of genetically close cultivars have been identified, including eleven groups of diploid cultivars, four groups of triploids and two groups of tetraploids. STRUCTURE revealed the existence of six populations in the diploid genetic pool and a few admixed cultivars. These results will be very useful for rationalizing D. alata genetic resources in breeding programs across different regions and for improving germplasm conservation methods.


Assuntos
Colletotrichum/fisiologia , Dioscorea/genética , Resistência à Doença/genética , Variação Genética , Filogenia , África , Ásia , Teorema de Bayes , Região do Caribe , Colletotrichum/patogenicidade , Produtos Agrícolas , Dioscorea/classificação , Dioscorea/microbiologia , Marcadores Genéticos , Repetições de Microssatélites , Filogeografia , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ploidias , Análise de Componente Principal
17.
Plant Dis ; 101(1): 209-216, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682296

RESUMO

Anthracnose, caused by Colletotrichum gloeosporioides, is one of the major constraints limiting water yam (Dioscorea alata) production in the tropics. In this region, yam anthracnose control is mostly achieved by the deployment of moderately resistant yam genotypes. Therefore, screening for new sources of anthracnose resistance is an important aspect of yam research in the tropics. The reliability and applicability of different yam anthracnose rating parameters has not been fully examined. Disease severity on detached leaves in the laboratory and leaf severity, lesion size, and spore production on whole plants in the greenhouse were used to screen an F1 yam population and correlate screening results with field evaluations. Anthracnose lesion size had the smallest predicted residual means but whole-plant severity and detached-leaf severity had the best variance homogeneity and relatively small predicted residual means. The concordance correlation coefficient (rc) and κ statistic were used to determine the agreement between anthracnose rating parameters and field evaluations. Detached-leaf (rc = 0.95, κ = 0.81) and whole-plant (rc = 0.96, κ = 0.86) evaluations had high positive agreement with field evaluation but spore production (κ = 0.69) and lesion size (κ = 0.57) had moderate positive agreement. These results suggest that all the evaluated rating parameters can be used to successfully screen yam germplasm for anthracnose resistance but lesion size and spore production data may need to be transformed.

18.
PLoS One ; 10(7): e0134031, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26222616

RESUMO

The reducing cost and rapid progress in next-generation sequencing techniques coupled with high performance computational approaches have resulted in large-scale discovery of advanced genomic resources in several model and non-model plant species. Yam (Dioscorea spp.) is a major food and cash crop in many countries but research efforts have been limited to understand the genetics and generate genomic information for the crop. The availability of a large number of genomic resources including genome-wide molecular markers will accelerate the breeding efforts and application of genomic selection in yams. In the present study, several methods including expressed sequence tags (EST)-sequencing, de novo sequencing, and genotyping-by-sequencing (GBS) profiles on two yam (Dioscorea alata L.) genotypes (TDa 95/00328 and TDa 95-310) was performed to generate genomic resources for use in its improvement programs. This includes a comprehensive set of EST-SSRs, genomic SSRs, whole genome SNPs, and reduced representation SNPs. A total of 1,152 EST-SSRs were developed from >40,000 EST-sequences generated from the two genotypes. A set of 388 EST-SSRs were validated as polymorphic showing a polymorphism rate of 34% when tested on two diverse parents targeted for anthracnose disease. In addition, approximately 40X de novo whole genome sequence coverage was generated for each of the two genotypes, and a total of 18,584 and 15,952 genomic SSRs were identified for TDa 95/00328 and TDa 95-310, respectively. A custom made pipeline resulted in the selection of 573 genomic SSRs common across the two genotypes, of which only eight failed, 478 being polymorphic and 62 monomorphic indicating a polymorphic rate of 83.5%. Additionally, 288,505 high quality SNPs were also identified between these two genotypes. Genotyping by sequencing reads on these two genotypes also revealed 36,790 overlapping SNP positions that are distributed throughout the genome. Our efforts in using different approaches in generating genomic resources provides a non-biased glimpse into the publicly available EST-sequences, yam genome, and GBS profiles with affirmation that the genomic complexity can be methodically unraveled and constitute a critical foundation for future studies in linkage mapping, germplasm analysis, and predictive breeding.


Assuntos
DNA de Plantas/genética , Dioscorea/genética , Genoma de Planta/genética , Etiquetas de Sequências Expressas , Biblioteca Gênica , Marcadores Genéticos/genética , Genômica/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética
19.
Theor Appl Genet ; 105(5): 666-673, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12582479

RESUMO

A minimum core subset of pearl millet [ Pennisetum glaucum (L.) R. Br.], which comprised 504 landrace accessions, was recently established from the global pearl millet germplasm collection of ICRISAT. The accessions for this core were selected by a random proportional sampling strategy following stratification of the entire landrace collection (about 16,000 accessions) according to their geographic origin and morpho-agronomic traits. In this study RFLP probes were used to quantify the genetic diversity within and between landrace accessions of this minimum core using a subset comprising ten accessions of Indian origin. Twenty five plants per accession were assayed with EcoRI, EcoRV, HindIII and DraI restriction enzymes, and 16 highly polymorphic RFLP probes, nine associated with a quantitative trait loci (QTLs) for downy mildew resistance, and five associated with a QTL for drought tolerance. A total of 51 alleles were detected using 16 different probe-enzyme combinations. The partitioning of variance components based on the analysis of molecular variance (AMOVA) for diversity analysis revealed high within-accession variability (30.9%), but the variability between accessions was significantly higher (69.1%) than that within the accessions. A dendrogram based on the dissimilarity matrix obtained using Ward's algorithm further delineated the 250 plants into ten major clusters, each comprised of plants from a single accession (with the exception of two single plants). A similar result was found in an earlier study using morpho-agronomic traits and geographic origin. This study demonstrated the utility of RFLP markers in detecting polymorphism and estimating genetic diversity in a highly cross-pollinated species such as pearl millet. When less-tedious marker systems are available, this method could be further extended to assess the genetic diversity between and within the remaining accessions in the pearl millet core subset.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA