Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(2): 113761, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38349793

RESUMO

Mutations that cause familial Alzheimer's disease (FAD) are found in amyloid precursor protein (APP) and presenilin, the catalytic component of γ-secretase, that together produce amyloid ß-peptide (Aß). Nevertheless, whether Aß is the primary disease driver remains controversial. We report here that FAD mutations disrupt initial proteolytic events in the multistep processing of APP substrate C99 by γ-secretase. Cryoelectron microscopy reveals that a substrate mimetic traps γ-secretase during the transition state, and this structure aligns with activated enzyme-substrate complex captured by molecular dynamics simulations. In silico simulations and in cellulo fluorescence microscopy support stabilization of enzyme-substrate complexes by FAD mutations. Neuronal expression of C99 and/or presenilin-1 in Caenorhabditis elegans leads to synaptic loss only with FAD-mutant transgenes. Designed mutations that stabilize the enzyme-substrate complex and block Aß production likewise led to synaptic loss. Collectively, these findings implicate the stalled process-not the products-of γ-secretase cleavage of substrates in FAD pathogenesis.


Assuntos
Doença de Alzheimer , Animais , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides , Microscopia Crioeletrônica , Mutação/genética , Caenorhabditis elegans/genética , Simulação de Dinâmica Molecular
2.
Alzheimers Dement ; 19(1): 79-96, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35278341

RESUMO

INTRODUCTION: Identifying CSF-based biomarkers for the ß-amyloidosis that initiates Alzheimer's disease (AD) could provide inexpensive and dynamic tests to distinguish AD from normal aging and predict future cognitive decline. METHODS: We developed immunoassays specifically detecting all C-terminal variants of secreted amyloid ß-protein and identified a novel biomarker, the Aß 37/42 ratio, that outperforms the canonical Aß42/40 ratio as a means to evaluate the γ-secretase activity and brain Aß accumulation. RESULTS: We show that Aß 37/42 can distinguish physiological and pathological status in (1) presenilin-1 mutant vs wild-type cultured cells, (2) AD vs control brain tissue, and (3) AD versus cognitively normal (CN) subjects in CSF, where 37/42 (AUC 0.9622) outperformed 42/40 (AUC 0.8651) in distinguishing CN from AD. DISCUSSION: We conclude that the Aß 37/42 ratio sensitively detects presenilin/γ-secretase dysfunction and better distinguishes CN from AD than Aß42/40 in CSF. Measuring this novel ratio alongside promising phospho-tau analytes may provide highly discriminatory fluid biomarkers for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Secretases da Proteína Precursora do Amiloide , Proteínas tau , Fragmentos de Peptídeos , Disfunção Cognitiva/diagnóstico , Biomarcadores
4.
J Am Chem Soc ; 144(14): 6215-6226, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35377629

RESUMO

The membrane-embedded γ-secretase complex processively cleaves within the transmembrane domain of amyloid precursor protein (APP) to produce 37-to-43-residue amyloid ß-peptides (Aß) of Alzheimer's disease (AD). Despite its importance in pathogenesis, the mechanism of processive proteolysis by γ-secretase remains poorly understood. Here, mass spectrometry and Western blotting were used to quantify the efficiency of tripeptide trimming of wild-type (WT) and familial AD (FAD) mutant Aß49. In comparison to WT Aß49, the efficiency of tripeptide trimming was similar for the I45F, A42T, and V46F Aß49 FAD mutants but substantially diminished for the I45T and T48P mutants. In parallel with biochemical experiments, all-atom simulations using a novel peptide Gaussian accelerated molecular dynamics (Pep-GaMD) method were applied to investigate the tripeptide trimming of Aß49 by γ-secretase. The starting structure was the active γ-secretase bound to Aß49 and APP intracellular domain (AICD), as generated from our previous study that captured the activation of γ-secretase for the initial endoproteolytic cleavage of APP (Bhattarai, A., ACS Cent. Sci. 2020, 6, 969-983). Pep-GaMD simulations captured remarkable structural rearrangements of both the enzyme and substrate, in which hydrogen-bonded catalytic aspartates and water became poised for tripeptide trimming of Aß49 to Aß46. These structural changes required a positively charged N-terminus of endoproteolytic coproduct AICD, which could dissociate during conformational rearrangements of the protease and Aß49. The simulation findings were highly consistent with biochemical experimental data. Taken together, our complementary biochemical experiments and Pep-GaMD simulations have enabled elucidation of the mechanism of tripeptide trimming of Aß49 by γ-secretase.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo
5.
Bioorg Med Chem Lett ; 54: 128446, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34767913

RESUMO

A series of analogs based on a prototype aryl aminothiazole γ-secretase modulator (GSM) were synthesized and tested for their effects on the profile of 37-to-42-residue amyloid ß-peptides (Aß), generated through processive proteolysis of precursor protein substrate by γ-secretase. Certain substitutions on the terminal aryl D ring resulted in an altered profile of Aß production compared to that seen with the parent molecule. Small structural changes led to concentration-dependent increases in Aß37 and Aß38 production without parallel decreases in their precursors Aß40 and Aß42, respectively. The new compounds therefore apparently also stimulate carboxypeptidase trimming of Aß peptides ≥ 43 residues, providing novel chemical tools for mechanistic studies of processive proteolysis by γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Descoberta de Drogas , Tiazóis/farmacologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tiazóis/química
6.
J Med Chem ; 64(20): 15367-15378, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34647731

RESUMO

The transmembrane domain (TMD) of the amyloid precursor protein of Alzheimer's disease is cut processively by γ-secretase through endoproteolysis and tricarboxypeptidase "trimming". We recently developed a prototype substrate TMD mimetic for structural analysis-composed of a helical peptide inhibitor linked to a transition-state analogue-that simultaneously engages a substrate exosite and the active site and is pre-organized to trap the carboxypeptidase transition state. Here, we developed variants of this prototype designed to allow visualization of transition states for endoproteolysis, TMD helix unwinding, and lateral gating of the substrate, identifying potent inhibitors for each class. These TMD mimetics exhibited non-competitive inhibition and occupy both the exosite and the active site, as demonstrated by inhibitor cross-competition experiments and photoaffinity probe binding assays. The new probes should be important structural tools for trapping different stages of substrate recognition and processing via ongoing cryo-electron microscopy with γ-secretase, ultimately aiding rational drug design.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Especificidade por Substrato
7.
ACS Cent Sci ; 6(6): 969-983, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32607444

RESUMO

Amyloid ß-peptide, the principal component of characteristic cerebral plaques of Alzheimer's disease (AD), is produced through intramembrane proteolysis of the amyloid precursor protein (APP) by γ-secretase. Despite the importance in the pathogenesis of AD, the mechanisms of intramembrane proteolysis and substrate processing by γ-secretase remain poorly understood. Here, complementary all-atom simulations using a robust Gaussian accelerated molecular dynamics (GaMD) method and biochemical experiments were combined to investigate substrate processing of wildtype and mutant APP by γ-secretase. The GaMD simulations captured spontaneous activation of γ-secretase, with hydrogen bonded catalytic aspartates and water poised for proteolysis of APP at the ε cleavage site. Furthermore, GaMD simulations revealed that familial AD mutations I45F and T48P enhanced the initial ε cleavage between residues Leu49-Val50, while M51F mutation shifted the ε cleavage site to the amide bond between Thr48-Leu49. Detailed analysis of the GaMD simulations allowed us to identify distinct low-energy conformational states of γ-secretase, different secondary structures of the wildtype and mutant APP substrate, and important active-site subpockets for catalytic function of the enzyme. The simulation findings were highly consistent with experimental analyses of APP proteolytic products using mass spectrometry and Western blotting. Taken together, the GaMD simulations and biochemical experiments have enabled us to elucidate the mechanisms of γ-secretase activation and substrate processing, which should facilitate rational computer-aided drug design targeting this functionally important enzyme.

8.
J Med Chem ; 63(6): 2941-2957, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32045236

RESUMO

CD73 inhibitors are promising drugs for the (immuno)therapy of cancer. Here, we present the synthesis, structure-activity relationships, and cocrystal structures of novel derivatives of the competitive CD73 inhibitor α,ß-methylene-ADP (AOPCP) substituted in the 2-position. Small polar or lipophilic residues increased potency, 2-iodo- and 2-chloro-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (15, 16) being the most potent inhibitors with Ki values toward human CD73 of 3-6 nM. Subject to the size and nature of the 2-substituent, variable binding modes were observed by X-ray crystallography. Depending on the binding mode, large species differences were found, e.g., 2-piperazinyl-AOPCP (21) was >12-fold less potent against rat CD73 compared to human CD73. This study shows that high CD73 inhibitory potency can be achieved by simply introducing a small substituent into the 2-position of AOPCP without the necessity of additional bulky N6-substituents. Moreover, it provides valuable insights into the binding modes of competitive CD73 inhibitors, representing an excellent basis for drug development.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Difosfato de Adenosina/análogos & derivados , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , 5'-Nucleotidase/química , 5'-Nucleotidase/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/farmacologia , Animais , Cristalografia por Raios X , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Ratos , Relação Estrutura-Atividade
9.
J Am Chem Soc ; 142(7): 3351-3355, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31999444

RESUMO

γ-Secretase is a membrane-embedded aspartyl protease complex central in biology and medicine. How this enzyme recognizes transmembrane substrates and catalyzes hydrolysis in the lipid bilayer is unclear. Inhibitors that mimic the entire substrate transmembrane domain and engage the active site should provide important tools for structural biology, yielding insight into substrate gating and trapping the protease in the active state. Here, we report transmembrane peptidomimetic inhibitors of the γ-secretase complex that contain an N-terminal helical peptide region that engages a substrate docking exosite and a C-terminal transition-state analog moiety targeted to the active site. Both regions are required for stoichiometric inhibition of γ-secretase. Moreover, enzyme inhibition kinetics and photoaffinity probe displacement experiments demonstrate that both the docking exosite and the active site are engaged by the bipartite inhibitors. The solution conformations of these potent transmembrane-mimetic inhibitors are similar to those of bound natural substrates, suggesting these probes are preorganized for high-affinity binding and should allow visualization of the active γ-secretase complex, poised for intramembrane proteolysis, by cryo-electron microscopy.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptidomiméticos/química , Inibidores de Proteases/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Domínio Catalítico , Células HEK293 , Humanos , Cinética , Simulação de Acoplamento Molecular , Peptidomiméticos/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice
10.
Biochemistry ; 58(44): 4398-4407, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31625391

RESUMO

γ-Secretase is a membrane-embedded aspartyl protease complex with presenilin as the catalytic component that cleaves within the transmembrane domain (TMD) of >90 known substrates, including the amyloid precursor protein (APP) of Alzheimer's disease. Processing by γ-secretase of the APP TMD produces the amyloid ß-peptide (Aß), including the 42-residue variant (Aß42) that pathologically deposits in the Alzheimer brain. Complex proteolysis of APP substrate by γ-secretase involves initial endoproteolysis and subsequent carboxypeptidase trimming, resulting in two pathways of Aß production: Aß49 → Aß46 → Aß43 → Aß40 and Aß48 → Aß45 → Aß42 → Aß38. Dominant mutations in APP and presenilin cause early onset familial Alzheimer's disease (FAD). Understanding how γ-secretase processing of APP is altered in FAD is essential for elucidating pathogenic mechanisms in FAD and developing effective therapeutics. To improve our understanding, we designed synthetic APP-based TMD substrates as convenient functional probes for γ-secretase. Installation of the helix-inducing residue α-aminoisobutyric acid provided full TMD helical substrates while also facilitating their synthesis and increasing the solubility of these highly hydrophobic peptides. Through mass spectrometric analysis of proteolytic products, synthetic substrates were identified that were processed in a manner that reproduced physiological processing of APP substrates. Validation of these substrates was accomplished through mutational variants, including the installation of two natural APP FAD mutations. These FAD mutations also resulted in increased levels of formation of Aß-like peptides corresponding to Aß45 and longer, raising the question of whether the levels of such long Aß peptides are indeed increased and might contribute to FAD pathogenesis.


Assuntos
Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Fragmentos de Peptídeos/química , Doença de Alzheimer/genética , Sequência de Aminoácidos , Ácidos Aminoisobutíricos/química , Precursor de Proteína beta-Amiloide/síntese química , Precursor de Proteína beta-Amiloide/genética , Espectrometria de Massas , Mutação , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/genética , Conformação Proteica em alfa-Hélice , Proteólise
11.
Front Pharmacol ; 8: 54, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261095

RESUMO

Nucleotide pyrophosphatase/phosphodiesterase type 1 (NPP1) is a membrane glycoprotein involved in the hydrolysis of extracellular nucleotides. Its major substrate is ATP which is converted to AMP and diphosphate. NPP1 was proposed as a new therapeutic target in brain cancer and immuno-oncology. Several NPP1 inhibitors have been reported to date, most of which were evaluated vs. the artificial substrate p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP). Recently, we observed large discrepancies in inhibitory potencies for a class of competitive NPP1 inhibitors when tested vs. the artificial substrate p-Nph-5'-TMP as compared to the natural substrate ATP. Therefore, the goal of the present study was to investigate whether inhibitors of human NPP1 generally display substrate-dependent inhibitory potency. Systematic evaluation of nucleotidic as well as non-nucleotidic NPP1 inhibitors revealed significant differences in determined Ki values for competitive, but not for non- and un-competitive inhibitors when tested vs. the frequently used artificial substrate p-Nph-5'-TMP as compared to ATP. Allosteric modulation of NPP1 by p-Nph-5'-TMP may explain these discrepancies. Results obtained using the AMP derivative p-nitrophenyl 5'-adenosine monophosphate (p-Nph-5'-AMP) as an alternative artificial substrate correlated much better with those employing the natural substrate ATP.

12.
J Med Chem ; 58(15): 6248-63, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26147331

RESUMO

ecto-5'-Nucleotidase (eN, CD73) catalyzes the hydrolysis of extracellular AMP to adenosine. eN inhibitors have potential for use as cancer therapeutics. The eN inhibitor α,ß-methylene-ADP (AOPCP, adenosine-5'-O-[(phosphonomethyl)phosphonic acid]) was used as a lead structure, and derivatives modified in various positions were prepared. Products were tested at rat recombinant eN. 6-(Ar)alkylamino substitution led to the largest improvement in potency. N(6)-Monosubstitution was superior to symmetrical N(6),N(6)-disubstitution. The most potent inhibitors were N(6)-(4-chlorobenzyl)- (10l, PSB-12441, Ki 7.23 nM), N(6)-phenylethyl- (10h, PSB-12425, Ki 8.04 nM), and N(6)-benzyl-adenosine-5'-O-[(phosphonomethyl)phosphonic acid] (10g, PSB-12379, Ki 9.03 nM). Replacement of the 6-NH group in 10g by O (10q, PSB-12431) or S (10r, PSB-12553) yielded equally potent inhibitors (10q, 9.20 nM; 10r, 9.50 nM). Selected compounds investigated at the human enzyme did not show species differences; they displayed high selectivity versus other ecto-nucleotidases and ADP-activated P2Y receptors. Moreover, high metabolic stability was observed. These compounds represent the most potent eN inhibitors described to date.


Assuntos
5'-Nucleotidase/antagonistas & inibidores , Difosfato de Adenosina/análogos & derivados , Inibidores Enzimáticos/farmacologia , Difosfato de Adenosina/química , Difosfato de Adenosina/farmacologia , Animais , Linhagem Celular , Inibidores Enzimáticos/química , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Modelos Moleculares , Ratos , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA