Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 57(12): 5639-5647, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38948182

RESUMO

Polymer vitrimers are a new class of materials that combine the advantages of thermoplastics and thermosets. This is due to the dynamic nature of the chemical bonds linking different chains. However, how this property affects the polymer dynamics at different length scales is still an open question. Here, we investigate the dynamics of model vitrimers based on well-defined polyisoprene (PI) chains using broadband dielectric spectroscopy. In this way, we study the polymer dynamics from the segmental to the whole chain scale, taking advantage of the fact that PI belongs to the class of molecules that exhibit a net dipole moment associated with the end-to-end vector. Three distinct relaxation phenomena are identified. The fastest relaxation is attributed to the segmental PI dynamics with a small influence of the cross-linking. An intermediate relaxation attributed to the dipolar character of the cross-linker is also observed. The slower identified relaxation component, corresponding to limited fluctuations of the end-to-end PI chains, is found to be determined by the dynamics of the clusters formed by the cross-linkers with an average time scale orders of magnitude faster than that of the terminal relaxation as inferred from the viscous flow.

2.
ACS Macro Lett ; 12(11): 1595-1601, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37947419

RESUMO

In addition to the glass transition, vitrimers undergo a topological transition from viscoelastic liquid to viscoelastic solid behavior when the network rearrangements facilitated by dynamic bond exchange reactions freeze. The microscopic observation of this transition is elusive. Model polyisoprene vitrimers based on imine dynamic covalent bonds were synthesized by reaction of α,ω-dialdehyde-functionalized polyisoprenes and a tris(2-aminoethyl)amine. In these dynamic networks nanophase separation of polymer and reactive groups leads to the emergence of a relevant length scale characteristic for the network structure. We exploited the scattering sensitivity to structural features at different length scales to determine how dynamical and topological arrests affect correlations at segmental and network levels. Chains expand obeying the same expansion coefficient throughout the entire viscoelastic region, i.e., both in the elastomeric regime and in the liquid regime. The onset of liquid-like behavior is only apparent at the mesoscale, where the scattering reveals the reorganization of the network triggered by bond exchange events. The such determined "microscopic" topological transition temperature is compared with the outcome of "conventional" methods, namely viscosimetry and differential scanning calorimetry. We show that using proper thermal (aging-like) protocols, this transition is also nicely revealed by the latter.

3.
ACS Polym Au ; 3(2): 158-181, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37065716

RESUMO

Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.

4.
Macromolecules ; 53(15): 6682-6689, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32904834

RESUMO

Supramolecular block copolymers (PS-DAT-sb-PI-Thy) were synthesized via noncovalent hydrogen bonding between well-defined thymine end-functionalized polyisoprene (PI-Thy) and diaminotriazine (DAT) end-functionalized polystyrene (PS-DAT). Three covalently linked block copolymers were also synthesized for comparison with the noncovalent supramolecular block copolymers. The complementary DAT/Thy interaction resulted in the microphase separation of the supramolecular block copolymer system. Detailed characterization of all functionalized homopolymers and block copolymers was carried out via proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography, matrix-assisted laser desorption/ionization-time of flight mass spectrometry, and differential scanning calorimetry. The self-assembly process of supramolecular block copolymers was evidenced by transmission electron microscopy. Small-angle X-ray scattering was also performed to study the microphase separation of supramolecular and covalently linked block copolymers. Comparison of microphase separation images of supramolecular block copolymers and the corresponding covalently linked analogues reveals differences in d-spacing and microdomain shape.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA