Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Cell Dev Biol ; 12: 1360079, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495619

RESUMO

Mitochondria are key metabolic hubs involved in cellular energy production and biosynthesis. ATP is generated primarily by glucose and fatty acid oxidation through the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) in the mitochondria. During OXPHOS there is also production of reactive oxygen species (ROS), which are involved in the regulation of cellular function. Mitochondria are also central in the regulating cell survival and death, particularly in the intrinsic apoptosis pathway. Severe asthma is a heterogeneous disease driven by various immune mechanisms. Severe eosinophilic asthma entails a type 2 inflammatory response and peripheral and lung eosinophilia, associated with severe airflow obstruction, frequent exacerbations and poor response to treatment. Mitochondrial dysfunction and altered metabolism have been observed in airway epithelial and smooth muscle cells from patients with asthma. However, the role of mitochondria in the development of eosinophilia and eosinophil-mediated inflammation in severe asthma is unknown. In this review, we discuss the currently limited literature on the role of mitochondria in eosinophil function and how it is regulated by asthma-relevant cytokines, including interleukin (IL)-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF), as well as by corticosteroid drugs. Moreover, we summarise the evidence on the role of mitochondria in the regulation of eosinophils apoptosis and eosinophil extracellular trap formation. Finally, we discuss the possible role of altered mitochondrial function in eosinophil dysfunction in severe asthma and suggest possible research avenues in order to better understand their role in disease pathogenesis, and identify novel therapeutic targets.

2.
Lung ; 202(1): 41-51, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38252134

RESUMO

BACKGROUND: The determinants linked to the short- and long-term improvement in lung function in patients with severe eosinophilic asthma (SEA) on biological treatment (BioT) remain elusive. OBJECTIVE: We sought to identify the predictors of early and late lung function improvement in patients with SEA after BioT. METHODS: 140 adult patients with SEA who received mepolizumab, dupilumab, or reslizumab were followed up for 6 months to evaluate improvement in forced expiratory volume in one second (FEV1). Logistic regression was used to determine the association between potential prognostic factors and improved lung function at 1 and 6 months of treatment. RESULTS: More than a third of patients with SEA using BioT showed early and sustained improvements in FEV1 after 1 month. A significant association was found between low baseline FEV1 and high blood eosinophil count and sustained FEV1 improvement after 1 month (0.54 [0.37-0.79] and 1.88 [1.28-2.97] odds ratios and 95% confidence interval, respectively). Meanwhile, among patients who did not experience FEV1 improvement after 1 month, 39% exhibited improvement at 6 months follow-up. A high ACT score measured at this visit was the most reliable predictor of late response after 6 months of treatment (OR and 95% CI 1.75 [1.09-2.98]). CONCLUSION: Factors predicting the efficacy of biological agents that improve lung function in SEA vary according to the stage of response.


Assuntos
Antiasmáticos , Asma , Produtos Biológicos , Eosinofilia Pulmonar , Adulto , Humanos , Antiasmáticos/uso terapêutico , Produtos Biológicos/uso terapêutico , Eosinófilos , Eosinofilia Pulmonar/tratamento farmacológico , Pulmão
3.
Ann Allergy Asthma Immunol ; 132(4): 457-462.e2, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37977324

RESUMO

BACKGROUND: Although various monoclonal antibodies have been used as add-on therapy for severe eosinophilic asthma (SEA), to the best of our knowledge, no direct head-to-head comparative study has evaluated their efficacy. OBJECTIVE: To compare the efficacy of reslizumab, mepolizumab, and dupilumab in patients with SEA. METHODS: This was a multicenter, prospective observational study in patients with SEA who had received 1 of these biologic agents for at least 6 months. Cox proportional hazard models were used to compare the risk of the first exacerbation event, adjusting for sputum or blood eosinophils and common asthma-related covariates. The annual exacerbation rate was analyzed using a negative binomial model, and a mixed-effect model was used to analyze changes in forced expiratory volume in 1 second and asthma control test score over time. RESULTS: A total of 141 patients with SEA were included in the analysis; 71 (50%) received dupilumab; 40 (28%) received reslizumab, and 30 (21%) received mepolizumab. During the 12-month follow-up, 27.5%, 43.3%, and 38.0% of patients in the reslizumab, mepolizumab, and dupilumab groups, respectively, experienced at least 1 exacerbation. However, after adjusting for confounding factors, the dupilumab and mepolizumab groups showed similar outcomes in time-to-first exacerbation, exacerbation rate, forced expiratory volume in 1 second, and asthma control test score to those of the reslizumab group. CONCLUSION: In patients with SEA, treatment with reslizumab, mepolizumab, and dupilumab resulted in comparable clinical outcomes within a 12-month period. TRIAL REGISTRATION: The cohort protocol was sanctioned by the Institutional Review Board of each study center (clinicaltrial.gov identifier NCT05164939).


Assuntos
Antiasmáticos , Asma , Produtos Biológicos , Eosinofilia Pulmonar , Humanos , Estudos Prospectivos , Eosinófilos , Anticorpos Monoclonais/uso terapêutico , Eosinofilia Pulmonar/tratamento farmacológico , Produtos Biológicos/uso terapêutico , Antiasmáticos/uso terapêutico
4.
EBioMedicine ; 99: 104936, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128411

RESUMO

BACKGROUND: Eosinophilic and neutrophilic asthma defined by high levels of blood and sputum eosinophils and neutrophils exemplifies the inflammatory heterogeneity of asthma, particularly severe asthma. We analysed the serum and sputum proteome to identify biomarkers jointly associated with these different phenotypes. METHODS: Proteomic profiles (N = 1129 proteins) were assayed in sputum (n = 182) and serum (n = 574) from two cohorts (U-BIOPRED and ADEPT) of mild-moderate and severe asthma by SOMAscan. Using least absolute shrinkage and selection operator (LASSO)-penalised logistic regression in a stability selection framework, we sought sparse sets of proteins associated with either eosinophilic or neutrophilic asthma with and without adjustment for established clinical factors including oral corticosteroid use and forced expiratory volume. FINDINGS: We identified 13 serum proteins associated with eosinophilic asthma, including 7 (PAPP-A, TARC/CCL17, ALT/GPT, IgE, CCL28, CO8A1, and IL5-Rα) that were stably selected while adjusting for clinical factors yielding an AUC of 0.84 (95% CI: 0.83-0.84) compared to 0.62 (95% CI: 0.61-0.63) for clinical factors only. Sputum protein analysis selected only PAPP-A (AUC = 0.81 [95% CI: 0.80-0.81]). 12 serum proteins were associated with neutrophilic asthma, of which 5 (MMP-9, EDAR, GIIE/PLA2G2E, IL-1-R4/IL1RL1, and Elafin) complemented clinical factors increasing the AUC from 0.63 (95% CI: 0.58-0.67) for the model with clinical factors only to 0.89 (95% CI: 0.89-0.90). Our model did not select any sputum proteins associated with neutrophilic status. INTERPRETATION: Targeted serum proteomic profiles are a non-invasive and scalable approach for subtyping of neutrophilic and eosinophilic asthma and for future functional understanding of these phenotypes. FUNDING: U-BIOPRED has received funding from the Innovative Medicines Initiative (IMI) Joint Undertaking under grant agreement no. 115010, resources of which are composed of financial contributions from the European Union's Seventh Framework Programme (FP7/2007-2013), and European Federation of Pharmaceutical Industries and Associations (EFPIA) companies' in-kind contributions (www.imi.europa.eu). ADEPT was funded by Johnson & Johnson/Janssen pharmaceutical Company.


Assuntos
Asma , Escarro , Humanos , Proteômica , Proteína Plasmática A Associada à Gravidez/metabolismo , Asma/metabolismo , Neutrófilos/metabolismo , Proteínas Sanguíneas/metabolismo
5.
Mol Med ; 29(1): 159, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996782

RESUMO

BACKGROUND: Delay in type II alveolar epithelial cell (AECII) regeneration has been linked to higher mortality in patients with acute respiratory distress syndrome (ARDS). However, the interaction between Doublecortin-like kinase 1 (DCLK1) and the Hippo signaling pathway in ARDS-associated AECII differentiation remains unclear. Therefore, the objective of this study was to understand the role of the DCLK1/Hippo pathway in mediating AECII differentiation in ARDS. MATERIALS AND METHODS: AECII MLE-12 cells were exposed to 0, 0.1, or 1 µg/mL of lipopolysaccharide (LPS) for 6 and 12 h. In the mouse model, C57BL/6JNarl mice were intratracheally (i.t.) injected with 0 (control) or 5 mg/kg LPS and were euthanized for lung collection on days 3 and 7. RESULTS: We found that LPS induced AECII markers of differentiation by reducing surfactant protein C (SPC) and p53 while increasing T1α (podoplanin) and E-cadherin at 12 h. Concurrently, nuclear YAP dynamic regulation and increased TAZ levels were observed in LPS-exposed AECII within 12 h. Inhibition of YAP consistently decreased cell levels of SPC, claudin 4 (CLDN-4), galectin 3 (LGALS-3), and p53 while increasing transepithelial electrical resistance (TEER) at 6 h. Furthermore, DCLK1 expression was reduced in isolated human AECII of ARDS, consistent with the results in LPS-exposed AECII at 6 h and mouse SPC-positive (SPC+) cells after 3-day LPS exposure. We observed that downregulated DCLK1 increased p-YAP/YAP, while DCLK1 overexpression slightly reduced p-YAP/YAP, indicating an association between DCLK1 and Hippo-YAP pathway. CONCLUSIONS: We conclude that DCLK1-mediated Hippo signaling components of YAP/TAZ regulated markers of AECII-to-AECI differentiation in an LPS-induced ARDS model.


Assuntos
Via de Sinalização Hippo , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Quinases Semelhantes a Duplacortina , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
6.
Front Immunol ; 14: 1201658, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520564

RESUMO

The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/metabolismo , Inflamação
7.
Artigo em Inglês | MEDLINE | ID: mdl-37268246

RESUMO

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.

8.
BMJ Open Respir Res ; 10(1)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37202121

RESUMO

BACKGROUND: Spread of SARS-CoV2 by aerosol is considered an important mode of transmission over distances >2 m, particularly indoors. OBJECTIVES: We determined whether SARS-CoV2 could be detected in the air of enclosed/semi-enclosed public spaces. METHODS AND ANALYSIS: Between March 2021 and December 2021 during the easing of COVID-19 pandemic restrictions after a period of lockdown, we used total suspended and size-segregated particulate matter (PM) samplers for the detection of SARS-CoV2 in hospitals wards and waiting areas, on public transport, in a university campus and in a primary school in West London. RESULTS: We collected 207 samples, of which 20 (9.7%) were positive for SARS-CoV2 using quantitative PCR. Positive samples were collected from hospital patient waiting areas, from hospital wards treating patients with COVID-19 using stationary samplers and from train carriages in London underground using personal samplers. Mean virus concentrations varied between 429 500 copies/m3 in the hospital emergency waiting area and the more frequent 164 000 copies/m3 found in other areas. There were more frequent positive samples from PM samplers in the PM2.5 fractions compared with PM10 and PM1. Culture on Vero cells of all collected samples gave negative results. CONCLUSION: During a period of partial opening during the COVID-19 pandemic in London, we detected SARS-CoV2 RNA in the air of hospital waiting areas and wards and of London Underground train carriage. More research is needed to determine the transmission potential of SARS-CoV2 detected in the air.


Assuntos
COVID-19 , Chlorocebus aethiops , Animais , Humanos , COVID-19/epidemiologia , RNA Viral , SARS-CoV-2 , Londres/epidemiologia , Pandemias , Células Vero , Controle de Doenças Transmissíveis , Aerossóis e Gotículas Respiratórios , Material Particulado/análise
9.
Biomed Pharmacother ; 159: 114302, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36701989

RESUMO

Acute respiratory distress syndrome (ARDS) contributes to higher mortality worldwide. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have immunomodulatory and regenerative potential. However, the effects of hUC-MSCs as an ARDS treatment remain unclear. We investigated the role of hUC-MSCs in the differentiation of type II alveolar epithelial cells (AECII) by regulating Yes-associated protein (YAP) in ARDS. Male C57BL/6JNarl mice were intratracheally (i.t.) administered lipopolysaccharide (LPS) to induce an ARDS model, followed by a single intravenous (i.v.) dose of hUC-MSCs. hUC-MSCs improved pulmonary function, decreased inflammation on day 3, and mitigated lung injury by reducing the lung injury score and increasing lung aeration (%) in mice on day 7 (p < 0.05). hUC-MSCs inactivated YAP on AECII and facilitated cell differentiation by decreasing Pro-surfactant protein C (Pro-SPC) and galectin 3 (LGALS3) while increasing podoplanin (T1α) in lungs of mice (p < 0.05). In AECII MLE-12 cells, both coculture with hUC-MSCs after LPS exposure and the YAP inhibitor, verteporfin, reduced Pro-SPC and LGALS3, whereas the YAP inhibitor increased T1α expression (p < 0.05). In conclusion, hUC-MSCs ameliorated lung injury of ARDS and regulated YAP to facilitate AECII differentiation.


Assuntos
Lesão Pulmonar , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Síndrome do Desconforto Respiratório , Animais , Humanos , Masculino , Camundongos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular , Galectina 3/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Lesão Pulmonar/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/metabolismo , Cordão Umbilical
10.
Lancet Respir Med ; 11(5): 415-424, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528039

RESUMO

BACKGROUND: COVID-19 has overwhelmed health services globally. Oral antiviral therapies are licensed worldwide, but indications and efficacy rates vary. We aimed to evaluate the safety and efficacy of oral favipiravir in patients hospitalised with COVID-19. METHODS: We conducted a multicentre, open-label, randomised controlled trial of oral favipiravir in adult patients who were newly admitted to hospital with proven or suspected COVID-19 across five sites in the UK (n=2), Brazil (n=2) and Mexico (n=1). Using a permuted block design, eligible and consenting participants were randomly assigned (1:1) to receive oral favipiravir (1800 mg twice daily for 1 day; 800 mg twice daily for 9 days) plus standard care, or standard care alone. All caregivers and patients were aware of allocation and those analysing data were aware of the treatment groups. The prespecified primary outcome was the time from randomisation to recovery, censored at 28 days, which was assessed using an intention-to-treat approach. Post-hoc analyses were used to assess the efficacy of favipiravir in patients aged younger than 60 years, and in patients aged 60 years and older. The trial was registered with clinicaltrials.gov, NCT04373733. FINDINGS: Between May 5, 2020 and May 26, 2021, we assessed 503 patients for eligibility, of whom 499 were randomly assigned to favipiravir and standard care (n=251) or standard care alone (n=248). There was no significant difference between those who received favipiravir and standard care, relative to those who received standard care alone in time to recovery in the overall study population (hazard ratio [HR] 1·06 [95% CI 0·89-1·27]; n=499; p=0·52). Post-hoc analyses showed a faster rate of recovery in patients younger than 60 years who received favipiravir and standard care versus those who had standard care alone (HR 1·35 [1·06-1·72]; n=247; p=0·01). 36 serious adverse events were observed in 27 (11%) of 251 patients administered favipiravir and standard care, and 33 events were observed in 27 (11%) of 248 patients receiving standard care alone, with infectious, respiratory, and cardiovascular events being the most numerous. There was no significant between-group difference in serious adverse events per patient (p=0·87). INTERPRETATION: Favipiravir does not improve clinical outcomes in all patients admitted to hospital with COVID-19, however, patients younger than 60 years might have a beneficial clinical response. The indiscriminate use of favipiravir globally should be cautioned, and further high-quality studies of antiviral agents, and their potential treatment combinations, are warranted in COVID-19. FUNDING: LifeArc and CW+.


Assuntos
COVID-19 , Adulto , Humanos , Pessoa de Meia-Idade , Idoso , SARS-CoV-2 , Resultado do Tratamento , Pirazinas/uso terapêutico
11.
Am J Respir Cell Mol Biol ; 67(4): 471-481, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35763375

RESUMO

Mitochondrial dysfunction has been reported in chronic obstructive pulmonary disease (COPD). Transfer of mitochondria from mesenchymal stem cells to airway smooth muscle cells (ASMCs) can attenuate oxidative stress-induced mitochondrial damage. It is not known whether mitochondrial transfer can occur between structural cells in the lungs or what role this may have in modulating bioenergetics and cellular function in healthy and COPD airways. Here, we show that ASMCs from both healthy ex-smokers and subjects with COPD can exchange mitochondria, a process that happens, at least partly, via extracellular vesicles. Exposure to cigarette smoke induces mitochondrial dysfunction and leads to an increase in the donation of mitochondria by ASMCs, suggesting that the latter may be a stress response mechanism. Healthy ex-smoker ASMCs that receive mitochondria show increases in mitochondrial biogenesis and respiration and a reduction in cell proliferation, irrespective of whether the mitochondria are transferred from healthy ex-smoker or COPD ASMCs. Our data indicate that mitochondrial transfer between structural cells is a homeostatic mechanism for the regulation of bioenergetics and cellular function within the airways and may represent an endogenous mechanism for reversing the functional consequences of mitochondrial dysfunction in diseases such as COPD.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Metabolismo Energético , Humanos , Pulmão/metabolismo , Mitocôndrias/metabolismo , Músculo Liso , Doença Pulmonar Obstrutiva Crônica/metabolismo
12.
Chin Med J (Engl) ; 135(10): 1141-1155, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35633594

RESUMO

ABSTRACT: Severe asthma is "asthma which requires treatment with high dose inhaled corticosteroids (ICS) plus a second controller (and/or systemic corticosteroids) to prevent it from becoming 'uncontrolled' or which remains 'uncontrolled' despite this therapy." The state of control was defined by symptoms, exacerbations and the degree of airflow obstruction. Therefore, for the diagnosis of severe asthma, it is important to have evidence for a diagnosis of asthma with an assessment of its severity, followed by a review of comorbidities, risk factors, triggers and an assessment of whether treatment is commensurate with severity, whether the prescribed treatments have been adhered to and whether inhaled therapy has been properly administered. Phenotyping of severe asthma has been introduced with the definition of a severe eosinophilic asthma phenotype characterized by recurrent exacerbations despite being on high dose ICS and sometimes oral corticosteroids, with a high blood eosinophil count and a raised level of nitric oxide in exhaled breath. This phenotype has been associated with a Type-2 (T2) inflammatory profile with expression of interleukin (IL)-4, IL-5, and IL-13. Molecular phenotyping has also revealed non-T2 inflammatory phenotypes such as Type-1 or Type-17 driven phenotypes. Antibody treatments targeted at the T2 targets such as anti-IL5, anti-IL5Rα, and anti-IL4Rα antibodies are now available for treating severe eosinophilic asthma, in addition to anti-immunoglobulin E antibody for severe allergic asthma. No targeted treatments are currently available for non-T2 inflammatory phenotypes. Long-term azithromycin and bronchial thermoplasty may be considered. The future lies with molecular phenotyping of the airway inflammatory process to refine asthma endotypes for precision medicine.


Assuntos
Asma , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/genética , Asma/patologia , Eosinofilia , Humanos , Gravidade do Paciente , Fenótipo
13.
Clin Transl Med ; 12(4): e816, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35474304

RESUMO

BACKGROUND: Exacerbation-prone asthma is a feature of severe disease. However, the basis for its persistency remains unclear. OBJECTIVES: To determine the clinical and transcriptomic features of frequent exacerbators (FEs) and persistent FEs (PFEs) in the U-BIOPRED cohort. METHODS: We compared features of FE (≥2 exacerbations in past year) to infrequent exacerbators (IE, <2 exacerbations) and of PFE with repeat ≥2 exacerbations during the following year to persistent IE (PIE). Transcriptomic data in blood, bronchial and nasal epithelial brushings, bronchial biopsies and sputum cells were analysed by gene set variation analysis for 103 gene signatures. RESULTS: Of 317 patients, 62.4% had FE, of whom 63.6% had PFE, while 37.6% had IE, of whom 61.3% had PIE. Using multivariate analysis, FE was associated with short-acting beta-agonist use, sinusitis and daily oral corticosteroid use, while PFE was associated with eczema, short-acting beta-agonist use and asthma control index. CEA cell adhesion molecule 5 (CEACAM5) was the only differentially expressed transcript in bronchial biopsies between PE and IE. There were no differentially expressed genes in the other four compartments. There were higher expression scores for type 2, T-helper type-17 and type 1 pathway signatures together with those associated with viral infections in bronchial biopsies from FE compared to IE, while there were higher expression scores of type 2, type 1 and steroid insensitivity pathway signatures in bronchial biopsies of PFE compared to PIE. CONCLUSION: The FE group and its PFE subgroup are associated with poor asthma control while expressing higher type 1 and type 2 activation pathways compared to IE and PIE, respectively.


Assuntos
Asma , Transcriptoma , Asma/genética , Asma/metabolismo , Asma/patologia , Brônquios/patologia , Estudos de Coortes , Humanos , Escarro/metabolismo , Transcriptoma/genética
14.
J Allergy Clin Immunol ; 149(4): 1445-1457.e5, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34624393

RESUMO

BACKGROUND: Orosomucoid 1-like protein 3 (ORMDL3), a transmembrane protein localized in the endoplasmic reticulum (ER), has been genetically associated with chronic obstructive pulmonary disease (COPD), in addition to childhood-onset asthma. However, the functional role of ORMDL3 in the pathogenesis of COPD is still unknown. OBJECTIVE: Because cigarette smoke is the major risk factor for COPD, we aimed to investigate the role of ORMDL3 in cigarette smoke-induced human airway smooth muscle cell (HASMC) injury. METHODS: The mRNA and protein expression of ORMDL3 was examined in HASMCs from nonsmokers and smokers without or with COPD. Knockdown of ORMDL3 in primary healthy HASMCs was performed using small interfering RNA before exposure to cigarette smoke medium (CSM) for 24 hours. Inflammatory, proliferative/apoptotic, ER stress, and mitochondrial markers were evaluated. RESULTS: Elevation of ORMDL3 mRNA and protein expression was observed in HASMCs of smokers without or with COPD. CSM caused significant upregulation of ORMDL3 expression in healthy nonsmokers. ORMDL3 knockdown regulated CSM-induced inflammation, cell proliferation, and apoptosis. Silencing ORMDL3 led to reduction of CSM-induced ER stress via inhibition of unfolded protein response pathways such as activating transcription factor 6 and protein kinase RNA-like ER kinase. ORMDL3 was also involved in CSM-induced mitochondrial dysfunction via the mitochondrial fission process. CONCLUSIONS: We report the induction of ORMDL3 in HASMCs after cigarette smoke exposure. ORMDL3 may mediate cigarette smoke-induced activation of unfolded protein response pathways during airway smooth muscle cell injury.


Assuntos
Asma , Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Asma/metabolismo , Criança , Fumar Cigarros/efeitos adversos , Estresse do Retículo Endoplasmático , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , RNA Mensageiro/metabolismo , Nicotiana
15.
Mol Aspects Med ; 85: 101026, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34625291

RESUMO

The lungs are exposed to reactive oxygen species oxygen (ROS) produced as a result of inhalation of oxygen, as well as smoke and other air pollutants. Cell metabolism and the NADPH oxidases (Nox) generate low levels of intracellular ROS that act as signal transduction mediators by inducing oxidative modifications of histones, enzymes and transcription factors. Redox signalling is also regulated by localised production and sensing of ROS in mitochondria, the endoplasmic reticulum (ER) and inside the nucleus. Intracellular ROS are maintained at low levels through the action of a battery of enzymatic and non-enzymatic antioxidants. Asthma is a heterogeneous airway inflammatory disease with different immune endotypes; these include atopic or non-atopic Th2 type immune response associated with eosinophilia, or a non-Th2 response associated with neutrophilia. Airway remodelling and hyperresponsiveness accompany the inflammatory response in asthma. Over-production of ROS resulting from infiltrating immune cells, particularly eosinophils and neutrophils, and a concomitant impairment of antioxidant responses lead to development of oxidative stress in asthma. Oxidative stress is augmented in severe asthma and during exacerbations, as well as by air pollution and obesity, and causes oxidative damage of tissues promoting airway inflammation and hyperresponsiveness. Furthermore, deregulated Nox activity, mitochondrial dysfunction, ER stress and/or oxidative DNA damage, resulting from exposure to irritants, inflammatory mediators or obesity, may lead to redox-dependent changes in cell signalling. ROS play a central role in airway epithelium-mediated sensing, development of innate and adaptive immune responses, and airway remodelling and hyperresponsiveness. Nonetheless, antioxidant compounds have proven clinically ineffective as therapeutic agents for asthma, partly due to issues with stability and in vivo metabolism of these compounds. The compartmentalised nature of ROS production and sensing, and the role of ROS in homeostatic responses and in the action of corticosteroids and ß2-adrenergic receptor agonists, adds another layer of complexity to antioxidant therapy development. Nox inhibitors and mitochondrial-targeted antioxidants are in clinical development for a number of diseases but they have not yet been investigated in asthma. A better understanding of the complex role of ROS in the pathogenesis of asthma will highlight new opportunities for more targeted and effective redox therapies.


Assuntos
Antioxidantes , Asma , Remodelação das Vias Aéreas , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Asma/tratamento farmacológico , Humanos , NADPH Oxidases/metabolismo , Obesidade , Estresse Oxidativo , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
16.
Methods Mol Biol ; 2269: 93-105, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33687674

RESUMO

Mesenchymal stem cells (MSCs) have emerged as an attractive candidate for cell-based therapy. In the past decade, many animal and pilot clinical studies have demonstrated that MSCs are therapeutically beneficial for the treatment of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). However, due to the scarcity of adult human MSCs, human-induced pluripotent stem cells mesenchymal stem cells (iPSCs) are now increasingly used as a source of MSCs. iPSCs are derived by reprogramming somatic cells from a wide variety of tissues such as skin biopsies and then differentiating them into iPSC-MSCs. One of the mechanisms through which MSCs exert their protective effects is mitochondrial transfer. Specifically, transfer of mitochondria from iPSC-MSCs to lung cells was shown to protect lung cells against oxidative stress-induced mitochondrial dysfunction and apoptosis and to reduce lung injury and inflammation in in vivo models of lung disease. In this chapter, we detail our methods to visualize and quantify iPSC-MSC-mediated mitochondrial transfer and to study its effects on oxidant-induced airway epithelial and smooth muscle cell models of acute airway cell injury.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias , Miócitos de Músculo Liso/metabolismo , Estresse Oxidativo , Células Epiteliais Alveolares/patologia , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Mesenquimais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/transplante , Miócitos de Músculo Liso/patologia
17.
Respir Res ; 21(1): 262, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046036

RESUMO

BACKGROUND: Mitochondrial damage and dysfunction have been reported in airway and quadriceps muscle cells of patients with chronic obstructive pulmonary disease (COPD). We determined the concomitance of mitochondrial dysfunction in these cells in COPD. METHODS: Bronchial biopsies were obtained from never- and ex-smoker volunteers and COPD patients (GOLD Grade 2) and quadriceps muscle biopsies from the same volunteers in addition to COPD patients at GOLD Grade 3/4 for measurement of mitochondrial function. RESULTS: Decreased mitochondrial membrane potential (ΔΨm), increased mitochondrial reactive oxygen species (mtROS) and decreased superoxide dismutase 2 (SOD2) levels were observed in mitochondria isolated from bronchial biopsies from Grade 2 patients compared to healthy never- and ex-smokers. There was a significant correlation between ΔΨm and FEV1 (% predicted), transfer factor of the lung for carbon monoxide (TLCOC % predicted), 6-min walk test and maximum oxygen consumption. In addition, ΔΨm was also associated with decreased expression levels of electron transport chain (ETC) complex proteins I and II. In quadriceps muscle of Grade 2 COPD patients, a significant increase in total ROS and mtROS was observed without changes in ΔΨm, SOD2 or ETC complex protein expression. However, quadriceps muscle of GOLD Grade 3/4 COPD patients showed an increased mtROS and decreased SOD2 and ETC complex proteins I, II, III and V expression. CONCLUSIONS: Mitochondrial dysfunction in the airways, but not in quadriceps muscle, is associated with airflow obstruction and exercise capacity in Grade 2 COPD. Oxidative stress-induced mitochondrial dysfunction in the quadriceps may result from similar disease processes occurring in the lungs.


Assuntos
Brônquios/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Músculo Quadríceps/metabolismo , Idoso , Brônquios/patologia , Feminino , Humanos , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doença Pulmonar Obstrutiva Crônica/patologia , Músculo Quadríceps/patologia , Espécies Reativas de Oxigênio/metabolismo
18.
J Innate Immun ; 12(1): 31-46, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31786568

RESUMO

Lung innate immunity is the first line of defence against inhaled allergens, pathogens and environmental pollutants. Cellular metabolism plays a key role in innate immunity. Catabolic pathways, including glycolysis and fatty acid oxidation (FAO), are interconnected with biosynthetic and redox pathways. Innate immune cell activation and differentiation trigger extensive metabolic changes that are required to support their function. Pro-inflammatory polarisation of macrophages and activation of dendritic cells, mast cells and neutrophils are associated with increased glycolysis and a shift towards the pentose phosphate pathway and fatty acid synthesis. These changes provide the macromolecules required for proliferation and inflammatory mediator production and reactive oxygen species for anti-microbial effects. Conversely, anti-inflammatory macrophages use primarily FAO and oxidative phosphorylation to ensure efficient energy production and redox balance required for prolonged survival. Deregulation of metabolic reprogramming in lung diseases, such as asthma and chronic obstructive pulmonary disease, may contribute to impaired innate immune cell function. Understanding how innate immune cell metabolism is altered in lung disease may lead to identification of new therapeutic targets. This is important as drugs targeting a number of metabolic pathways are already in clinical development for the treatment of other diseases such as cancer.


Assuntos
Pneumopatias/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Animais , Reprogramação Celular , Glicólise , Humanos , Imunidade Inata , Pulmão/patologia , Fosforilação Oxidativa , Via de Pentose Fosfato
19.
Am J Respir Crit Care Med ; 197(11): 1369-1371, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29664685
20.
J Allergy Clin Immunol ; 141(5): 1634-1645.e5, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28911970

RESUMO

BACKGROUND: Oxidative stress-induced mitochondrial dysfunction can contribute to inflammation and remodeling in patients with chronic obstructive pulmonary disease (COPD). Mesenchymal stem cells protect against lung damage in animal models of COPD. It is unknown whether these effects occur through attenuating mitochondrial dysfunction in airway cells. OBJECTIVE: We sought to examine the effect of induced pluripotent stem cell-derived mesenchymal stem cells (iPSC-MSCs) on oxidative stress-induce mitochondrial dysfunction in human airway smooth muscle cells (ASMCs) in vitro and in mouse lungs in vivo. METHODS: ASMCs were cocultured with iPSC-MSCs in the presence of cigarette smoke medium (CSM), and mitochondrial reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), and apoptosis were measured. Conditioned medium from iPSC-MSCs and transwell cocultures were used to detect any paracrine effects. The effect of systemic injection of iPSC-MSCs on airway inflammation and hyperresponsiveness in ozone-exposed mice was also investigated. RESULTS: Coculture of iPSC-MSCs with ASMCs attenuated CSM-induced mitochondrial ROS, apoptosis, and ΔΨm loss in ASMCs. iPSC-MSC-conditioned medium or transwell cocultures with iPSC-MSCs reduced CSM-induced mitochondrial ROS but not ΔΨm or apoptosis in ASMCs. Mitochondrial transfer from iPSC-MSCs to ASMCs was observed after direct coculture and was enhanced by CSM. iPSC-MSCs attenuated ozone-induced mitochondrial dysfunction, airway hyperresponsiveness, and inflammation in mouse lungs. CONCLUSION: iPSC-MSCs offered protection against oxidative stress-induced mitochondrial dysfunction in human ASMCs and in mouse lungs while reducing airway inflammation and hyperresponsiveness. These effects are, at least in part, dependent on cell-cell contact, which allows for mitochondrial transfer, and paracrine regulation. Therefore iPSC-MSCs show promise as a therapy for oxidative stress-dependent lung diseases, such as COPD.


Assuntos
Pulmão/patologia , Células-Tronco Mesenquimais/patologia , Mitocôndrias/patologia , Doenças Mitocondriais/patologia , Estresse Oxidativo/fisiologia , Animais , Apoptose/fisiologia , Técnicas de Cocultura/métodos , Meios de Cultivo Condicionados/metabolismo , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Pulmão/metabolismo , Masculino , Potencial da Membrana Mitocondrial/fisiologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Espécies Reativas de Oxigênio/metabolismo , Fumaça/efeitos adversos , Nicotiana/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA