Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8695, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622194

RESUMO

AMPylation is a biologically significant yet understudied post-translational modification where an adenosine monophosphate (AMP) group is added to Tyrosine and Threonine residues primarily. While recent work has illuminated the prevalence and functional impacts of AMPylation, experimental identification of AMPylation sites remains challenging. Computational prediction techniques provide a faster alternative approach. The predictive performance of machine learning models is highly dependent on the features used to represent the raw amino acid sequences. In this work, we introduce a novel feature extraction pipeline to encode the key properties relevant to AMPylation site prediction. We utilize a recently published dataset of curated AMPylation sites to develop our feature generation framework. We demonstrate the utility of our extracted features by training various machine learning classifiers, on various numerical representations of the raw sequences extracted with the help of our framework. Tenfold cross-validation is used to evaluate the model's capability to distinguish between AMPylated and non-AMPylated sites. The top-performing set of features extracted achieved MCC score of 0.58, Accuracy of 0.8, AUC-ROC of 0.85 and F1 score of 0.73. Further, we elucidate the behaviour of the model on the set of features consisting of monogram and bigram counts for various representations using SHapley Additive exPlanations.


Assuntos
Processamento de Proteína Pós-Traducional , Tirosina , Tirosina/metabolismo , Sequência de Aminoácidos , Monofosfato de Adenosina/metabolismo , Treonina/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-35139023

RESUMO

Phase separation of proteins play key roles in cellular physiology including bacterial division, tumorigenesis etc. Consequently, understanding the molecular forces that drive phase separation has gained considerable attention and several factors including hydrophobicity, protein dynamics, etc., have been implicated in phase separation. Data-driven identification of new phase separating proteins can enable in-depth understanding of cellular physiology and may pave way towards developing novel methods of tackling disease progression. In this work, we exploit the existing wealth of data on phase separating proteins to develop sequence-based machine learning method for prediction of phase separating proteins. We use reduced alphabet schemes based on hydrophobicity and conformational similarity along with distributed representation of protein sequences and biochemical properties as input features to Support Vector Machine (SVM) and Random Forest (RF) machine learning algorithms. We used both curated and balanced dataset for building the models. RF trained on balanced dataset with hydropathy, conformational similarity embeddings and biochemical properties achieved accuracy of 97%. Our work highlights the use of conformational similarity, a feature that reflects amino acid flexibility, and hydrophobicity for predicting phase separating proteins. Use of such "interpretable" features obtained from the ever-growing knowledgebase of phase separation is likely to improve prediction performances further.


Assuntos
Aminoácidos , Proteínas , Proteínas/química , Sequência de Aminoácidos , Aminoácidos/química , Aprendizado de Máquina , Bactérias , Máquina de Vetores de Suporte , Algoritmos
3.
J Bioinform Comput Biol ; 19(5): 2150028, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34693886

RESUMO

Bacterial virulence can be attributed to a wide variety of factors including toxins that harm the host. Pore-forming toxins are one class of toxins that confer virulence to the bacteria and are one of the promising targets for therapeutic intervention. In this work, we develop a sequence-based machine learning framework for the prediction of pore-forming toxins. For this, we have used distributed representation of the protein sequence encoded by reduced alphabet schemes based on conformational similarity and hydropathy index as input features to Support Vector Machines (SVMs). The choice of conformational similarity and hydropathy indices is based on the functional mechanism of pore-forming toxins. Our methodology achieves about 81% accuracy indicating that conformational similarity, an indicator of the flexibility of amino acids, along with hydrophobic index can capture the intrinsic features of pore-forming toxins that distinguish it from other types of transporter proteins. Increased understanding of the mechanisms of pore-forming toxins can further contribute to the use of such "mechanism-informed" features that may increase the prediction accuracy further.


Assuntos
Bactérias , Máquina de Vetores de Suporte , Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA