Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 149: 1051-1058, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32006583

RESUMO

Kainate receptors belong to the ionotropic glutamate receptor family and play critical roles in the regulation of synaptic networks. The kainate receptor subunit GluK3 has unique functional properties and contributes to presynaptic facilitation at the hippocampal mossy fiber synapses along with roles at the post-synapses. To gain structural insights into the unique functional properties and dynamics of GluK3 receptor, we imaged them via electron microscopy in the apo-state and in complex with either agonist kainate or antagonist UBP301. Our analysis of all the GluK3 full-length structures not only provides insights into the receptor transitions between desensitized and closed states but also reveals a "non-classical" conformation of neurotransmitter binding domain in the closed-state distinct from that observed in AMPA and other kainate receptor structures. We show by molecular dynamics simulations that Asp759 influences the stability of the LBD dimers and hence could be responsible for the observed conformational variability and dynamics of the GluK3 via electron microscopy. Lower dimer stability could explain faster desensitization and low agonist sensitivity of GluK3. In overview, our work helps to associate biochemistry and physiology of GluK3 receptors with their structural biology and offers structural insights into the unique functional properties of these atypical receptors.


Assuntos
Microscopia Crioeletrônica , Neurotransmissores/metabolismo , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/ultraestrutura , Ácido Aspártico/química , Células HEK293 , Humanos , Ácido Caínico/metabolismo , Ligantes , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Receptores de Ácido Caínico/isolamento & purificação , Receptor de GluK3 Cainato
2.
J Membr Biol ; 252(4-5): 499-507, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520159

RESUMO

The ß2-adrenergic receptor (ß2AR) is a membrane-bound G-protein-coupled receptor and an important drug target for asthma. Clinical studies report that the population variant Gln27Glu is associated with a differential response to common asthma drugs, such as albuterol, isoproterenol and terbutaline. Interestingly, the 27th amino acid is positioned on the N-terminal region that is the most flexible and consequently the least studied part of the receptor. In this study, we probe the molecular origin of the differential drug binding by performing structural modeling and simulations of the wild-type (Gln) and variant (Glu) receptors followed by ensemble docking with the ligands, albuterol, isoproterenol and terbutaline. In line with clinical studies, the ligands were observed to interact preferentially with the Glu variant. Our results indicate that the Glu residue at the 27th position perturbs the network of electrostatic interactions that connects the N-terminal region to the binding site in the wild-type receptor. As a result, the Glu variant is observed to bind better to the three ligands tested in this study. Our study provides a structural basis to explain the variable drug response associated with the 27th position polymorphism in the ß2AR and is a starting step to identify genotype-specific therapeutics.


Assuntos
Ácido Glutâmico/química , Glutamina/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores Adrenérgicos beta 2/química , Ácido Glutâmico/genética , Glutamina/genética , Humanos , Domínios Proteicos , Receptores Adrenérgicos beta 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA