Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 176(6): 1282-1294.e20, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849372

RESUMO

Multiple signatures of somatic mutations have been identified in cancer genomes. Exome sequences of 1,001 human cancer cell lines and 577 xenografts revealed most common mutational signatures, indicating past activity of the underlying processes, usually in appropriate cancer types. To investigate ongoing patterns of mutational-signature generation, cell lines were cultured for extended periods and subsequently DNA sequenced. Signatures of discontinued exposures, including tobacco smoke and ultraviolet light, were not generated in vitro. Signatures of normal and defective DNA repair and replication continued to be generated at roughly stable mutation rates. Signatures of APOBEC cytidine deaminase DNA-editing exhibited substantial fluctuations in mutation rate over time with episodic bursts of mutations. The initiating factors for the bursts are unclear, although retrotransposon mobilization may contribute. The examined cell lines constitute a resource of live experimental models of mutational processes, which potentially retain patterns of activity and regulation operative in primary human cancers.


Assuntos
Desaminases APOBEC/genética , Neoplasias/genética , Desaminases APOBEC/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA/metabolismo , Análise Mutacional de DNA/métodos , Bases de Dados Genéticas , Exoma , Genoma Humano/genética , Xenoenxertos , Humanos , Mutagênese , Mutação/genética , Taxa de Mutação , Retroelementos , Sequenciamento do Exoma/métodos
2.
Am J Hematol ; 94(6): 628-634, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30829413

RESUMO

The histological diagnosis of peripheral T-cell lymphoma (PTCL) can represent a challenge, particularly in the case of closely related entities such as angioimmunoblastic T-lymphoma (AITL), PTCL-not otherwise specified (PTCL-NOS), and ALK-negative anaplastic large-cell lymphoma (ALCL). Although gene expression profiling and next generations sequencing have been proven to define specific features recurrently associated with distinct entities, genomic-based stratifications have not yet led to definitive diagnostic criteria and/or entered into the routine clinical practice. Herein, to improve the current molecular classification between AITL and PTCL-NOS, we analyzed the transcriptional profiles from 503 PTCLs stratified according to their molecular configuration and integrated them with genomic data of recurrently mutated genes (RHOA G17V , TET2, IDH2 R172 , and DNMT3A) in 53 cases (39 AITLs and 14 PTCL-NOSs) included in the series. Our analysis unraveled that the mutational status of RHOA G17V , TET2, and DNMT3A poorly correlated, individually, with peculiar transcriptional fingerprints. Conversely, in IDH2 R172 samples a strong transcriptional signature was identified that could act as a surrogate for mutational status. The integrated analysis of clinical, mutational, and molecular data led to a simplified 19-gene signature that retains high accuracy in differentiating the main nodal PTCL entities. The expression levels of those genes were confirmed in an independent cohort profiled by RNA-sequencing.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Linfoma de Células T Periférico , Mutação , Proteínas de Neoplasias , Transcrição Gênica , Feminino , Humanos , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/metabolismo , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética
3.
BMC Genomics ; 19(1): 604, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103702

RESUMO

BACKGROUND: Genome editing by CRISPR-Cas9 technology allows large-scale screening of gene essentiality in cancer. A confounding factor when interpreting CRISPR-Cas9 screens is the high false-positive rate in detecting essential genes within copy number amplified regions of the genome. We have developed the computational tool CRISPRcleanR which is capable of identifying and correcting gene-independent responses to CRISPR-Cas9 targeting. CRISPRcleanR uses an unsupervised approach based on the segmentation of single-guide RNA fold change values across the genome, without making any assumption about the copy number status of the targeted genes. RESULTS: Applying our method to existing and newly generated genome-wide essentiality profiles from 15 cancer cell lines, we demonstrate that CRISPRcleanR reduces false positives when calling essential genes, correcting biases within and outside of amplified regions, while maintaining true positive rates. Established cancer dependencies and essentiality signals of amplified cancer driver genes are detectable post-correction. CRISPRcleanR reports sgRNA fold changes and normalised read counts, is therefore compatible with downstream analysis tools, and works with multiple sgRNA libraries. CONCLUSIONS: CRISPRcleanR is a versatile open-source tool for the analysis of CRISPR-Cas9 knockout screens to identify essential genes.


Assuntos
Sistemas CRISPR-Cas , Marcação de Genes/métodos , Genoma Humano , Neoplasias/genética , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Amplificação de Genes , Técnicas de Inativação de Genes/métodos , Genes Essenciais , Ensaios de Triagem em Larga Escala , Humanos , Análise de Sequência de DNA , Software
4.
Cancer Cell ; 32(2): 169-184.e7, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28810143

RESUMO

Patterns of genomic evolution between primary and metastatic breast cancer have not been studied in large numbers, despite patients with metastatic breast cancer having dismal survival. We sequenced whole genomes or a panel of 365 genes on 299 samples from 170 patients with locally relapsed or metastatic breast cancer. Several lines of analysis indicate that clones seeding metastasis or relapse disseminate late from primary tumors, but continue to acquire mutations, mostly accessing the same mutational processes active in the primary tumor. Most distant metastases acquired driver mutations not seen in the primary tumor, drawing from a wider repertoire of cancer genes than early drivers. These include a number of clinically actionable alterations and mutations inactivating SWI-SNF and JAK2-STAT3 pathways.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Evolução Molecular , Mutação , Recidiva Local de Neoplasia/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Cromossômicas não Histona/antagonistas & inibidores , Proteínas Cromossômicas não Histona/genética , Feminino , Humanos , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/genética , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
5.
Circ Cardiovasc Genet ; 7(6): 920-9, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25373139

RESUMO

BACKGROUND: Human variation in susceptibility to hypoxia-induced pulmonary hypertension is well recognized. High-altitude residents who do not develop pulmonary hypertension may host protective gene mutations. METHODS AND RESULTS: Exome sequencing was conducted on 24 unrelated Kyrgyz highlanders living 2400 to 3800 m above sea level, 12 (10 men; mean age, 54 years) with an elevated mean pulmonary artery pressure (mean±SD, 38.7±2.7 mm Hg) and 12 (11 men; mean age, 52 years) with a normal mean pulmonary artery pressure (19.2±0.6 mm Hg) to identify candidate genes that may influence the pulmonary vascular response to hypoxia. A total of 140 789 exomic variants were identified and 26 116 (18.5%) were classified as novel or rare. Thirty-three novel or rare potential pathogenic variants (frameshift, essential splice-site, and nonsynonymous) were found exclusively in either ≥3 subjects with high-altitude pulmonary hypertension or ≥3 highlanders with a normal mean pulmonary artery pressure. A novel missense mutation in GUCY1A3 in 3 subjects with a normal mean pulmonary artery pressure encodes an α1-A680T soluble guanylate cyclase (sGC) variant. Expression of the α1-A680T sGC variant in reporter cells resulted in higher cyclic guanosine monophosphate production compared with the wild-type enzyme and the purified α1-A680T sGC exhibited enhanced sensitivity to nitric oxide in vitro. CONCLUSIONS: The α1-A680T sGC variant may contribute to protection against high-altitude pulmonary hypertension and supports sGC as a pharmacological target for reducing pulmonary artery pressure in humans at altitude.


Assuntos
Doença da Altitude/genética , Guanilato Ciclase/genética , Hipertensão Pulmonar/genética , Receptores Citoplasmáticos e Nucleares/genética , Alelos , Doença da Altitude/patologia , Sequência de Aminoácidos , Animais , GMP Cíclico/metabolismo , Feminino , Genótipo , Guanilato Ciclase/metabolismo , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Óxido Nítrico/metabolismo , Filogenia , Polimorfismo de Nucleotídeo Único , Receptores Citoplasmáticos e Nucleares/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Transdução de Sinais , Guanilil Ciclase Solúvel
6.
BMC Bioinformatics ; 7 Suppl 5: S12, 2006 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-17254296

RESUMO

BACKGROUND: Whole genome sequence data is a step towards generating the 'parts list' of life to understand the underlying principles of Biocomplexity. Genome sequencing initiatives of human and model organisms are targeted efforts towards understanding principles of evolution with an application envisaged to improve human health. These efforts culminated in the development of dedicated resources. Whereas a large number of viral genomes have been sequenced by groups or individuals with an interest to study antigenic variation amongst strains and species. These independent efforts enabled viruses to attain the status of 'best-represented taxa' with the highest number of genomes. However, due to lack of concerted efforts, viral genomic sequences merely remained as entries in the public repositories until recently. RESULTS: VirGen is a curated resource of viral genomes and their analyses. Since its first release, it has grown both in terms of coverage of viral families and development of new modules for annotation and analysis. The current release (2.0) includes data for twenty-five families with broad host range as against eight in the first release. The taxonomic description of viruses in VirGen is in accordance with the ICTV nomenclature. A well-characterised strain is identified as a 'representative entry' for every viral species. This non-redundant dataset is used for subsequent annotation and analyses using sequenced-based Bioinformatics approaches. VirGen archives precomputed data on genome and proteome comparisons. A new data module that provides structures of viral proteins available in PDB has been incorporated recently. One of the unique features of VirGen is predicted conformational and sequential epitopes of known antigenic proteins using in-house developed algorithms, a step towards reverse vaccinology. CONCLUSION: Structured organization of genomic data facilitates use of data mining tools, which provides opportunities for knowledge discovery. One of the approaches to achieve this goal is to carry out functional annotations using comparative genomics. VirGen, a comprehensive viral genome resource that serves as an annotation and analysis pipeline has been developed for the curation of public domain viral genome data http://bioinfo.ernet.in/virgen/virgen.html. Various steps in the curation and annotation of the genomic data and applications of the value-added derived data are substantiated with case studies.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genoma Viral , Sequência de Aminoácidos , Variação Antigênica , Simulação por Computador , Bases de Dados de Proteínas , Variação Genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Vacinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA