Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168970, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38043806

RESUMO

We conducted an SVOC mass transfer and child-exposure modeling analysis considering the combined sorption of multiple SVOCs containing DnBP, BBP, DEHP, DINP and DINCH in indoor environments. A mechanistic model was applied to describe the organic film formation, and a partition-coefficient-prediction model was originally developed for the realistic organic films. The characteristics of film formation on impermeable surfaces were examined based on three different assumptions: the widely-used constant Kns,im assumption, Koa assumption, and the proposed Kom assumption (predicted specifically for the realistic organic films in this study). After long-term SVOC sorption, the organic film reached increasing equilibrium gradually under constant Kns,im assumption. While under Koa and Kom assumption, organic films exhibited nearly linear increases on surfaces, the trends of which agreed well with field studies. However, the film thicknesses calculated under Kom assumption with larger film partition coefficients were approximately twice larger than those under Koa assumption. Meanwhile, Horizontal surfaces with higher deposition rates of particle-phase SVOCs exhibited larger velocities of film growth compared to vertical surfaces. Under the Kom assumption, exposures of hazardous SVOCs for a 3-year-old child increased by 87.5 %-198.7 % even with the weekly cleaning of indoor impermeable surfaces, carpet and cloth. This study is anticipated to provide valuable insights into the film-forming characteristics of multiple SVOCs and the accompanying significant health risks to human beings in indoor environments.

2.
Front Genet ; 14: 1138137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999060

RESUMO

Background: Human chromosome 12 contains I kappa B kinase interacting protein (IKBIP) is also commonly known as IKIP. The involvement of IKBIP in the growth of tumors has only been discussed in a small number of publications. Purpose: To explore the role that IKBIP plays in the development of a wide variety of neoplasms, as well as the tumor immunological microenvironment. Methods: UALCAN, HPA, Genotype Tissue Expression, Cancer Genome Maps, and other datasets were used to analyze IKBIP expression. We thoroughly investigated the predictive importance of IKBIP in pan-cancer, clinical traits, and genetic anomalies. We studied whether there is a link between IKBIP and immune-related genes, microsatellite instability (MSI), and the incidence of tumor mutational burden (TMB). The link between immune cell infiltration and IKBIP expression was examined using data on immune cell infiltration from ImmuCellAI, TIMER2, and earlier studies. Finally, gene set enrichment analysis (GSEA) was performed to determine the signaling pathways associated with IKBIP. Results: IKBIP is highly expressed in most cancers and is negatively associated with the prognosis of several major cancer types. Furthermore, IKBIP expression was linked to TMB in 13 cancers and MSI in seven cancers. Additionally, IKBIP is associated with numerous immunological and cancer-promoting pathways. Simultaneously, various cancer types have unique tumor-infiltrating immune cell profiles. Conclusion: IKBIP has the potential to act as a pan-cancer oncogene and is crucial for both carcinogenesis and cancer immunity. Elevated IKBIP expression implies an immunosuppressive environment and may be used as a prognostic biomarker and therapeutic target.

3.
Environ Sci Process Impacts ; 25(4): 818-831, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36897109

RESUMO

Assessing exposure to semivolatile organic compounds (SVOCs) that are emitted from consumer products and building materials in indoor environments is critical for reducing the associated health risks. Many modeling approaches have been developed for SVOC exposure assessment indoors, including the DustEx webtool. However, the applicability of these tools depends on the availability of model parameters such as the gas-phase concentration at equilibrium with the source material surface, y0, and the surface-air partition coefficient, Ks, both of which are typically determined in chamber experiments. In this study, we compared two types of chamber design, a macro chamber, which downscaled the dimensions of a room to a smaller size with roughly the same surface-to-volume ratio, and a micro chamber, which minimized the sink-to-source surface area ratio to shorten the time required to reach steady state. The results show that the two chambers with different sink-to-source surface area ratios yield comparable steady-state gas- and surface-phase concentrations for a range of plasticizers, while the micro chamber required significantly shorter times to reach steady state. Using y0 and Ks measured with the micro chamber, we conducted indoor exposure assessments for di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP) and di(2-ethylhexyl) terephthalate (DEHT) with the updated DustEx webtool. The predicted concentration profiles correspond well with existing measurements and demonstrate the direct applicability of chamber data in exposure assessments.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Dibutilftalato , Materiais de Construção , Compostos Orgânicos
4.
J Expo Sci Environ Epidemiol ; 32(3): 356-365, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318457

RESUMO

Estimates of human exposure to semi-volatile organic compounds (SVOCs) such as phthalates, phthalate alternatives, and some per- and polyfluoroalkyl substances (PFAS) are required for the risk-based evaluation of chemicals. Recently, a modular mechanistic modeling framework to rapidly predict SVOC emission and partitioning in indoor environments has been presented, in which several mechanistically consistent source emission categories (SECs) were identified. However, not all SECs have well-developed emission models. In addition, data on model parameters are missing even for frequently studied SVOCs. These knowledge gaps impede the comprehensive prediction of the fate of SVOCs indoors. In this paper, sets of high-priority phthalates, phthalate alternatives, and PFAS were identified based on chemical occurrence indoors and additional selection criteria. These high-priority chemicals served as the basis for exploring model parameter availability for existing indoor SVOC emission and partitioning models. The results reveal that additional experimental and modeling work is needed to fully understand the behavior of SVOCs indoors and to predict exposures with greater confidence and lower uncertainty. Modeling approaches to fill some of the identified gaps are proposed. The prioritized sets of chemicals and proposed new modeling approaches will help guide future research. The inclusion of polar phases in the framework will further expand its applicability and scope. IMPACT STATEMENT: This paper compiles data on high-priority chemicals commonly found indoors and information on the availability of applicable models and model parameters to predict emission, partitioning, and subsequent exposure to these chemicals. Modeling approaches for a selection of the missing SECs (source emission categories) are proposed, to illustrate the path forward. The comprehensive data set helps inform researchers, exposure assessors, and policy makers to better understand the state of the science regarding modeling of indoor exposure to semi-volatile organic compounds (SVOCs) and per- and polyfluoroalkyl substances (PFAS).


Assuntos
Poluição do Ar em Ambientes Fechados , Fluorocarbonos , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Poeira , Humanos , Plastificantes , Compostos Orgânicos Voláteis/análise
5.
Environ Sci Technol ; 55(1): 25-43, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33319994

RESUMO

A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Humanos , Compostos Orgânicos/análise , Compostos Orgânicos Voláteis/análise
6.
Environ Sci Technol ; 55(1): 341-351, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33287540

RESUMO

Phthalate and alternative plasticizers are semivolatile organic compounds (SVOCs) and among the most abundant indoor pollutants. Although ingestion of dust is one of the major exposure pathways to them, migration knowledge from source products to indoor dust is still limited. Systematic chamber measurements were conducted to investigate the direct transfer of these SVOCs between source products and dust in contact with the source. Substantial direct source-to-dust transfer of SVOCs was observed for all tests. The concentration of bis(2-ethylhexyl)phthalate in dust was 12 times higher than the pre-experimental level after only two days of source-dust contact. A mechanistic model was developed to predict the direct transfer process, and a reasonable agreement between model predictions and measurements was achieved. The octanol/air partition coefficient (Koa) of SVOCs, the emission parameter of the source product (y0), and the characteristics of the dust layer (i.e., porosity and thickness) control the transfer, affecting the SVOC concentration in dust, the kinetics of direct transfer, or both. Dust mass loading has a significant influence on the transfer, while relative humidity only has a limited effect. The findings suggest that minimizing the use of SVOC-containing products and house vacuuming are effective intervention strategies to reduce young children's exposure to SVOCs.


Assuntos
Poluição do Ar em Ambientes Fechados , Ácidos Ftálicos , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Criança , Pré-Escolar , Poeira , Humanos , Laboratórios , Ácidos Ftálicos/análise , Plastificantes , Compostos Orgânicos Voláteis/análise
7.
Chemosphere ; 250: 126284, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32234620

RESUMO

Semi-volatile organic compounds (SVOCs), such as phthalates, organophosphates, and polybrominated diphenyl ethers, are emerging as an important class of pollutants that are of serious health concerns. Determining concentrations of these pollutants is of great importance for environmental and exposure studies. In this work, a needle trap device (NTD) method was developed to measure the concentration of SVOCs in air samples. Sorbents were packed in the NTD to capture SVOCs with the aid of a sampling pump. NTD operational parameters, such as desorption temperature, desorption time, and sampling flow rate, were optimized for the target SVOCs. The limit of detection for air sampling by the NTD method ranged between 5 pg and 1 ng, depending on the SVOC compound. The variations in terms of NTD repeatability and reproducibility were lower than 14% for all cases. In addition, the influence of other experimental parameters, such as sampling temperature and humidity, breakthrough volume, NTD storage time, as well as carryover effect were examined. Finally, NTDs were used to determine emissions of gas-phase SVOCs from various consumer products in an emission cell and to collect total airborne SVOC samples (gas and particle phases) in an office. The results of NTD method were in an agreement with data obtained by conventional active sampling methods using Tenax® sorbent tubes and polyurethane foam samplers, but with improvements of relative standard deviation, sensitivity, and sampling time. The results demonstrated that the NTD method is a simple, sensitive, effective, reusable, and inexpensive technique for sampling and analyzing SVOCs in the concentration range from 2 ng m-3 to 100 µg m-3 in air.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Agulhas , Compostos Orgânicos Voláteis/análise , Alcanos/análise , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Éteres Difenil Halogenados/análise , Ácidos Ftálicos/análise , Temperatura
8.
PeerJ ; 7: e8147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772847

RESUMO

Di-2-ethylhexyl phthalate (DEHP) is a plasticizer used in consumer products and building materials, including polyvinyl chloride flooring material. DEHP adsorbs from material and leaches into soil, water, or dust and presents an exposure risk to building occupants by inhalation, ingestion, or absorption. A number of bacterial isolates are demonstrated to degrade DEHP in culture, but bacteria may be susceptible to it as well, thus this study examined the relation of DEHP to bacterial communities in dust. Polyvinyl chloride flooring was seeded with homogenized house dust and incubated for up to 14 days, and bacterial communities in dust were identified at days 1, 7, and 14 using the V3-V4 regions of the bacterial 16S rRNA gene. DEHP concentration in dust increased over time, as expected, and bacterial richness and Shannon diversity were negatively correlated with DEHP concentration. Some sequence variants of Bacillus, Corynebacterium jeddahense, Streptococcus, and Peptoniphilus were relatively more abundant at low concentrations of DEHP, while some Sphingomonas, Chryseobacterium, and a member of the Enterobacteriaceae family were relatively more abundant at higher concentrations. The built environment is known to host lower microbial diversity and biomass than natural environments, and DEHP or other chemicals indoors may contribute to this paucity.

9.
Indoor Air ; 29(6): 880-894, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31429989

RESUMO

Since the advent of soap, personal hygiene practices have revolved around removal, sterilization, and disinfection-both of visible soil and microscopic organisms-for a myriad of cultural, aesthetic, or health-related reasons. Cleaning methods and products vary widely in their recommended use, effectiveness, risk to users or building occupants, environmental sustainability, and ecological impact. Advancements in science and technology have facilitated in-depth analyses of the indoor microbiome, and studies in this field suggest that the traditional "scorched-earth cleaning" mentality-that surfaces must be completely sterilized and prevent microbial establishment-may contribute to long-term human health consequences. Moreover, the materials, products, activities, and microbial communities indoors all contribute to, or remove, chemical species to the indoor environment. This review examines the effects of cleaning with respect to the interaction of chemistry, indoor microbiology, and human health.


Assuntos
Poluição do Ar em Ambientes Fechados , Ambiente Construído , Desinfecção , Humanos , Microbiota
10.
Indoor Air ; 29(3): 390-402, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30624800

RESUMO

Analysis of the dust from heating, ventilation, and air conditioning (HVAC) filters is a promising long-term sampling method to characterize airborne particle-bound contaminants. This filter forensics (FF) approach provides valuable insights about differences between buildings, but does not allow for an estimation of indoor concentrations. In this investigation, FF is extended to quantitative filter forensics (QFF) by using measurements of the volume of air that passes through the filter and the filter efficiency, to assess the integrated average airborne concentrations of total fungal and bacterial DNA, 36 fungal species, endotoxins, phthalates, and organophosphate esters (OPEs) based on dust extracted from HVAC filters. Filters were collected from 59 homes located in central Texas, USA, after 1 month of deployment in each summer and winter. Results showed considerable differences in the concentrations of airborne particle-bound contaminants in studied homes. The airborne concentrations for most of the analytes are comparable with those reported in the literature. In this sample of homes, the HVAC characterization measurements varied much less between homes than the variation in the filter dust concentration of each analyte, suggesting that even in the absence of HVAC data, FF can provide insight about concentration differences for homes with similar HVAC systems.


Assuntos
Filtros de Ar/microbiologia , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , Monitoramento Ambiental/métodos , Ar Condicionado/instrumentação , Microbiologia do Ar , DNA Bacteriano/análise , Endotoxinas/análise , Fungos/isolamento & purificação , Calefação/instrumentação , Habitação , Humanos , Organofosfatos/análise , Ácidos Ftálicos/análise , Estações do Ano , Texas , Ventilação/instrumentação
11.
Indoor Air ; 29(1): 55-69, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30339320

RESUMO

A mechanistic model that considers particle dynamics and their effects on surface emissions and sorptions was developed to predict the fate and transport of phthalates in indoor environments. A controlled case study was conducted in a test house to evaluate the model. The model-predicted evolving concentrations of benzyl butyl phthalate in indoor air and settled dust and on interior surfaces are in good agreement with measurements. Sensitivity analysis was performed to quantify the effects of parameter uncertainties on model predictions. The model was then applied to a typical residential environment to investigate the fate of di-2-ethylhexyl phthalate (DEHP) and the factors that affect its transport. The predicted steady-state DEHP concentrations were 0.14 µg/m3 in indoor air and ranged from 80 to 46 000 µg/g in settled dust on various surfaces, which are generally consistent with the measurements of previous studies in homes in different countries. An increase in the mass concentration of indoor particles may significantly enhance DEHP emission and its concentrations in air and on surfaces, whereas increasing ventilation has only a limited effect in reducing DEHP in indoor air. The influence of cleaning activities on reducing DEHP concentration in indoor air and on interior surfaces was quantified, and the results showed that DEHP exposure can be reduced by frequent and effective cleaning activities and the removal of existing sources, though it may take a relatively long period of time for the levels to drop significantly. Finally, the model was adjusted to identify the relative contributions of gaseous sorption and particulate-bound deposition to the overall uptake of semi-volatile organic compounds (SVOCs) by indoor surfaces as functions of time and the octanol-air partition coefficient (Koa ) of the chemical. Overall, the model clarifies the mechanisms that govern the emission of phthalates and the subsequent interactions among air, suspended particles, settled dust, and interior surfaces. This model can be easily extended to incorporate additional indoor source materials/products, sorption surfaces, particle sources, and room spaces. It can also be modified to predict the fate and transport of other SVOCs, such as phthalate-alternative plasticizers, flame retardants, and biocides, and serves to improve our understanding of human exposure to SVOCs in indoor environments.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Ácidos Ftálicos/análise , Dietilexilftalato/análise , Poeira/análise , Humanos , Modelos Químicos , Plastificantes/análise , Texas
12.
Environ Int ; 121(Pt 1): 916-930, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30347374

RESUMO

Phthalates and organophosphates are ubiquitous indoor semi-volatile organic contaminants (SVOCs) that have been widely used as plasticizers and flame retardants in consumer products. Although many studies have assessed their levels in house dust, only a few used dust samples captured by filters of building heating, ventilation, and air conditioning (HVAC) systems. HVAC filters collect particles from large volumes of air over a long period of time (potentially known) and thus provide a spatially and temporally integrated concentration. This study measured concentrations of phthalates and organophosphates in HVAC filter dust and settled floor dust collected from low-income homes in Texas, United States, in both the summer and winter seasons. The most frequently detected compounds were benzyl butyl phthalate (BBzP), di-(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DnOP), tris (1-chloro-2-propyl) phosphate (TCIPP), triphenyl phosphate (TPHP), and tris (1,3-dichloroisopropyl) phosphate (TDCIPP). The median level of TCIPP in settled dust was 3- to 180-times higher than levels reported in other studies of residential homes. Significantly higher concentrations were observed in HVAC filter dust as compared to settled dust for most of the frequently detected compounds in both seasons, except for several phthalates in the winter. SVOC concentrations in settled dust in winter were generally higher than in summer, while different seasonality patterns were found for HVAC filter dust. Settled dust samples from homes with vinyl flooring contained significantly higher levels of BBzP and DEHP as compared to homes with other types of floor material. The concentration of DEHP and TDCIPP in settled dust also significantly associated with the presence of carpet in homes. Cleaning activities to remove dust from furniture actually increased the levels of certain compounds in HVAC filter dust, while frequent vacuuming of carpet helped to decrease the concentrations of some compounds in settled dust. Additionally, the size and age of a given house also correlated with the levels of some pollutants in dust. A statistically significant association between DEHP concentration in HVAC filter dust in summer and the severity of asthma in children was observed. These results suggest that HVAC filter dust represents a useful sampling medium to monitor indoor SVOC concentrations with high sensitivity; in contrast, when using settled dust, in addition to consideration of seasonal influences, it is critical to know the sampling location because the type and level of SVOCs may be related to local materials used there.


Assuntos
Poluentes Atmosféricos/análise , Asma/epidemiologia , Poeira/análise , Retardadores de Chama/análise , Organofosfatos/análise , Ácidos Ftálicos/análise , Plastificantes/análise , Ar Condicionado , Filtros de Ar , Poluição do Ar em Ambientes Fechados/análise , Asma/fisiopatologia , Criança , Monitoramento Ambiental , Feminino , Pisos e Cobertura de Pisos , Calefação , Humanos , Masculino , Pobreza , Testes de Função Respiratória , Estações do Ano , Texas , Ventilação
13.
Environ Sci Technol ; 49(16): 9674-81, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26200125

RESUMO

A case study in a test house was conducted to investigate the fate and transport of benzyl butyl phthalate (BBzP) and di-2-ethylhexyl phthalate (DEHP) in residential indoor environments and the influence of temperature. Total airborne concentrations of phthalates were sensitive to indoor temperatures, and their steady-state concentration levels increased by a factor of 3 with an increase in temperature from 21 to 30 °C. Strong sorption of phthalates was observed on interior surfaces, including dust, dish plates, windows, mirrors, fabric cloth, and wood. Equilibrium partitioning coefficients for phthalates adsorbed to these surfaces were determined, and their values decreased with increasing temperature. For impervious surfaces, dimensionless partitioning coefficients were calculated and found to be comparable to reported values of the octanol-air partition coefficients of phthalates, Koa, suggesting that an organic film may develop on these surfaces. In addition, sorption kinetics was studied experimentally, and the equilibration time scale for impervious surfaces was found to be faster than that of fabric cloth. Finally, using an indoor fate model to interpret the measurement results, there was good agreement between model predictions and the observed indoor air concentrations of BBzP in the test house.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Modelos Teóricos , Ácidos Ftálicos/análise , Adsorção , Dietilexilftalato/análise , Poeira/análise , Habitação , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA