Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Ann Gen Psychiatry ; 23(1): 8, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297317

RESUMO

Major depressive disorder (MDD) is predicted to become the second most common cause of disability in the near future. Exposure to glyphosate (Gly)-based herbicides has been linked to the onset of MDD. However, the underlying mechanisms remain unclear. The aim of this study was to investigate the potential molecular mechanisms of MDD induced by Gly using network toxicology approach. The MDD dataset GSE76826 from the Gene Expression Omnibus database was referenced to identify differentially expressed genes (DEGs) in peripheral blood leukocytes of MDD patients and controls. The potential intersection targets of Gly-induced MDD were screened by network toxicology. The intersection targets were used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and to construct protein-protein interaction networks. The binding potentials of hub targets with Gly were validated by molecular docking. In total, 1216 DEGs associated with Gly-induced MDD were identified. Subsequent network pharmacology further refined the search to 43 targets. GO and KEGG enrichment analyses revealed multiple signaling pathways involved in GLY-induced MDD. Six potential core targets (CD40, FOXO3, FOS, IL6, TP53, and VEGFA) were identified. Finally, molecular docking demonstrated that Gly exhibited strong binding affinity to the core targets. The results of this study identified potential molecular mechanisms underlying Gly induced MDD and provided new insights for prevention and treatment.

2.
Bioresour Technol ; 394: 130231, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142909

RESUMO

In this study, a surfactant-assisted diluted ethylenediamine (EDA) fractionation process was investigated for co-generation of technical lignin and biobutanol from corn stover. The results showed that the addition of PEG 8000 significantly enhanced cellulose recovery (88.9 %) and lignin removal (68.9 %) in the solid fraction. Moreover, the pulp achieved 86.5 % glucose yield and 82.6 % xylose yield in enzymatic hydrolysis. Structural characterization confirmed that the fractionation process promoted the preservation of active ß-O-4 bonds (35.8/100R) in isolated lignin and functionalized the lignin through structural modification using EDA and surfactant grafting. The enzymatic hydrolysate of the pulps yielded a sugar solution for acetone-butanol-ethanol (ABE) fermentation, resulting in an ABE concentration of 15.4 g/L and an overall yield of 137.2 g/Kg of dried corn stalk. Thus, the surfactant-assisted diluted EDA fractionation has the potential to enhance the overall economic feasibility of second-generation biofuels production within the framework of biorefinery.


Assuntos
Lignina , Zea mays , Lignina/química , Zea mays/metabolismo , Tensoativos , Celulose/metabolismo , Butanóis/química , 1-Butanol , Etilenodiaminas , Hidrólise , Fermentação
3.
Toxicol Res (Camb) ; 12(6): 1126-1134, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38145100

RESUMO

Background: Per- and polyfluoroalkyl substances (PFASs) are a class of environmental contaminants that pose significant health risks to both animals and humans. Although the hippocampal neurotoxic effects of numerous PFASs have been reported, the underlying mechanisms of combined exposure to PFASs-induced hippocampal neurotoxicity remain unclear. Methods: In this study, network pharmacology analysis was performed to identify the intersectional targets of PFASs for possible associations with hippocampal neurotoxicity. The evaluation of the influence of PFASs on intersectional targets was assessed using a weighted method. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the screened targets were performed, the intersected hub targets calculated by various algorithms were screened in the network and molecular docking was also used to analyze binding activities. Results: Our results indicated that eight PFASs, which acted on key targets (MYC, ESR1, STAT3, RELA, MAPK3) impacted the NF-κB signaling pathway, STAT3 signaling pathway, and MAPK signaling pathways to exert neurotoxicity in the hippocampus. The molecular docking results revealed that PFASs have strong binding potential to the hub targets. Conclusions: Our findings provided a basis for future studies to investigate the detailed mechanisms of PFASs-induced hippocampal neurotoxicity and to develop preventative and control strategies.

4.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139198

RESUMO

ß-Farnesene is an advanced molecule with promising applications in agriculture, the cosmetics industry, pharmaceuticals, and bioenergy. To supplement the shortcomings of rational design in the development of high-producing ß-farnesene strains, a Metabolic Pathway Design-Fermentation Test-Metabolomic Analysis-Target Mining experimental cycle was designed. In this study, by over-adding 20 different amino acids/nucleobases to induce fluctuations in the production of ß-farnesene, the changes in intracellular metabolites in the ß-farnesene titer-increased group were analyzed using non-targeted metabolomics. Differential metabolites that were detected in each experimental group were selected, and their metabolic pathways were located. Based on these differential metabolites, targeted strain gene editing and culture medium optimization were performed. The overexpression of the coenzyme A synthesis-related gene pantothenate kinase (PanK) and the addition of four mixed water-soluble vitamins in the culture medium increased the ß-farnesene titer in the shake flask to 1054.8 mg/L, a 48.5% increase from the initial strain. In the subsequent fed-batch fermentation, the ß-farnesene titer further reached 24.6 g/L. This work demonstrates the tremendous application value of metabolomics analysis for the development of industrial recombinant strains and the optimization of fermentation conditions.


Assuntos
Sesquiterpenos , Yarrowia , Yarrowia/genética , Fermentação , Sesquiterpenos/metabolismo , Redes e Vias Metabólicas , Engenharia Metabólica
5.
Ann Hum Biol ; 50(1): 442-451, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37819172

RESUMO

BACKGROUND: The development of Alzheimer's disease (AD) is promoted by a combination of genetic and environmental factors. Notably, combined exposure to triazine herbicides atrazine (ATR), simazine (SIM), and propazine (PRO) may promote the development of AD, but the mechanism is unknown. AIM: To study the molecular mechanism of AD induced by triazine herbicides. METHODS: Differentially expressed genes (DEGs) of AD patients and controls were identified. The intersectional targets of ATR, SIM, and PRO for possible associations with AD were screened through network pharmacology and used for gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis. The binding potentials between the core targets and herbicides were validated by molecular docking and molecular dynamics. RESULTS: A total of 1,062 DEGs were screened between the AD patients and controls, which identified 148 intersectional targets of herbicides causing AD that were screened by network pharmacology analysis. GO and KEGG enrichment analysis revealed that cell cycling and cellular senescence were important signalling pathways. Finally, the core targets EGFR, FN1, and TYMS were screened and validated by molecular docking and molecular dynamics. CONCLUSION: Our results suggest that combined exposure to triazine herbicides might promote the development of AD, thereby providing new insights for the prevention of AD.


Assuntos
Doença de Alzheimer , Atrazina , Herbicidas , Humanos , Simulação de Acoplamento Molecular , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Herbicidas/toxicidade , Herbicidas/análise , Triazinas/toxicidade , Triazinas/análise , Simazina/análise , Simazina/metabolismo , Simazina/farmacologia , Atrazina/análise , Biologia Computacional
6.
ACS Synth Biol ; 12(8): 2475-2486, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37527188

RESUMO

Adipic acid is an important monomer in the synthesis of nylon-6,6. In recent years, the biosynthesis of adipic acid has received more and more attention. The pathway with l-lysine as a precursor has potential for adipic acid synthesis, and 2-hydroxyadipate is a key intermediate metabolite in this pathway. In this Letter, the biosynthesis pathway of 2-hydroxyadipate was constructed in Escherichia coli. Through enhancement of precursor synthesis and cofactors regulation, 7.11 g/L of 2-hydroxyadipate was produced in the 5 L bioreactor, which verified the scale-up potential of 2-hydroxyadipate production. Furthermore, 11.1 g/L of 2-hydroxyadipate was produced in the 5 L bioreactor on the basis of potential optimization strategies via transcriptome analysis. This is the first time for the biosynthesis of 2-hydroxyadipate. The results lay a solid foundation for the biosynthesis of adipic acid and the production of bionylon.


Assuntos
Escherichia coli , Engenharia Metabólica , Engenharia Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Vias Biossintéticas , Adipatos/metabolismo
7.
Mol Carcinog ; 62(12): 1832-1845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37560880

RESUMO

Aberrant DNA methylation is a critical regulator of gene expression in the development and progression of glioblastoma (GBM). However, the impact of methylation-driven gene PCDHB4 changes on GBM occurrence and progression remains unclear. Therefore, this study aimed to identify the PCDHB4 gene for early diagnosis and prognostic evaluation and clarify its functional role in GBM. Methylation-driven gene PCDHB4 was selected for GBM using the multi-omics integration method based on publicly available data sets. The diagnostic capabilities of PCDHB4 methylation and 5-hydroxymethylcytosines were validated in tissue and blood cell-free DNA (cfDNA) samples, respectively. Combined survival analysis of PCDHB4 methylation and immune infiltration cells evaluated the prognostic predictive performance of GBM patients. We identified that the PCDHB4 gene achieved high discriminative capabilities for GBM and normal tissues with an area under the curve value of 0.941. PCDHB4 hypermethylation was observed in cfDNA blood samples from GBM patients. Compared with GBM patients with PCDHB4 hypermethylation level, patients with PCDHB4 hypomethylation level had significantly poorer overall survival (p = 0.035). In addition, GBM patients with PCDHB4 hypermethylation and high infiltration of CD4+ T cell activation level had a favorable survival (p = 0.026). Moreover, we demonstrated that mRNA expression of PCDHB4 was downregulated in GBM tissues and upregulated in GBM cell lines with PCDHB4 demethylation, and PCDHB4 overexpression inhibited GBM cell proliferation and migration. In summary, we discovered a novel methylation-driven gene PCDHB4 for the diagnosis and prognosis of GBM and demonstrated that PCDHB4 is a tumor suppressor in vitro experiments.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Glioblastoma , Humanos , Metilação de DNA , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Genes Supressores de Tumor , Ácidos Nucleicos Livres/metabolismo , Regulação Neoplásica da Expressão Gênica
8.
J Cancer Res Clin Oncol ; 149(13): 11499-11515, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37392200

RESUMO

PURPOSE: Cuproptosis, a novel programmed cell death, plays an important role in glioma growth, angiogenesis, and immune response. Nonetheless, the role of cuproptosis-related genes (CRGs) in the prognosis and tumor microenvironment (TME) of gliomas remains unknown. METHODS: By non-negative matrix factorization consensus clustering, 1286 glioma patients were classified based on the mRNA expression levels of 27 CRGs and investigated the association of immune infiltration and clinical characteristics with cuproptosis subtypes. A CRG-score system was constructed using LASSO and multivariate Cox regression methods and validated in independent cohorts to predict the prognosis of glioma patients. RESULTS: Glioma patients were divided into two cuproptosis subtypes. Cluster C2 was enriched in immune-related pathways, had higher macrophage M2, neutrophils, and CD8 + T cells, and poorer prognosis compared with cluster C1 which was enriched in metabolism-related pathways. We further constructed and validated the ten-gene CRG risk scores. Glioma patients in the high CRG-score group had higher tumor mutation burden, higher TME scores, and poorer prognoses compared with the low CRG-score group. Additionally, the AUC value of the CRG-score was 0.778 in predicting the prognosis of gliomas. WHO grading, IDH mutation, 1p/19q codeletion, and MGMT methylation were significant differences between high and low CRG-score groups. CONCLUSION: This study demonstrated that CRG-score was related to immune cell infiltration and could accurately predict gliomas' prognosis. Our findings may provide a novel understanding of the potential role of cuproptosis molecular pattern and TME in the immune response and prognosis of glioma patients.


Assuntos
Algoritmos , Glioma , Humanos , Prognóstico , Apoptose , Linfócitos T CD8-Positivos , Glioma/genética , Microambiente Tumoral/genética
9.
Bioresour Technol ; 382: 129171, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37196740

RESUMO

ß-Farnesene is a sesquiterpene commonly found in essential oils of plants, with applications spanning from agricultural pest control and biofuels to industrial chemicals. The use of renewable substrates in microbial cell factories offers a sustainable approach to ß-farnesene biosynthesis. In this study, malic enzyme from Mucor circinelloides was examined for NADPH regeneration, concomitant with the augmentation of cytosolic acetyl-CoA supply by expressing ATP-citrate lyase from Mus musculus and manipulating the citrate pathway via AMP deaminase and isocitrate dehydrogenase. Carbon flux was modulated through the elimination of native 6-phosphofructokinase, while the incorporation of an exogenous non-oxidative glycolysis pathway served to bridge the pentose phosphate pathway with the mevalonate pathway. The resulting orthogonal precursor supply pathway facilitated ß-farnesene production, reaching 810 mg/L in shake-flask fermentation. Employing optimal fermentation conditions and feeding strategy, a titer of 28.9 g/L of ß-farnesene was attained in a 2 L bioreactor.


Assuntos
Sesquiterpenos , Yarrowia , Animais , Camundongos , Yarrowia/metabolismo , Fermentação , Reatores Biológicos , Sesquiterpenos/metabolismo , Engenharia Metabólica/métodos
10.
Gene ; 868: 147357, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36914143

RESUMO

BACKGROUND: Aberrant promoter methylation of CpG islands plays an important role in carcinogenesis. However, the association between the DNA methylation of JAK-STAT pathway-related genes in peripheral blood leukocytes and colorectal cancer (CRC) susceptibility remains unclear. METHODS: We conducted a case-control study of 403 patients with CRC and 419 cancer free controls, and the DNA methylation levels of JAK2, STAT1, STAT3, and SOCS3 in peripheral blood samples from all subjects were assessed using a methylation-sensitive high-resolution melting (MS-HRM) analysis. RESULTS: Compared with controls, the methylation of the JAK2, STAT1 and SOCS3 genes increased the CRC risk (ORadjusted=1.96, 95% CI, 1.12-3.41, P=0.01; ORadjusted=5.37, 95% CI, 3.74-7.71, P<0.01; ORadjusted=3.30, 95% CI, 1.58-6.87, P<0.01). In the multiple CpG site methylation (MCSM) analysis, a high MCSM value denoted an increased CRC risk (ORadjusted=4.97, 95% CI, 3.34-7.37, P<0.01). CONCLUSION: In peripheral blood, the methylation of JAK2, STAT1, and high levels of MCSM are promising biomarkers for CRC risk.


Assuntos
Neoplasias Colorretais , Janus Quinases , Humanos , Ilhas de CpG/genética , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Fatores de Transcrição STAT/genética , Transdução de Sinais/genética , Metilação de DNA , Biomarcadores Tumorais/genética , Proteínas Supressoras da Sinalização de Citocina/genética
11.
Ecotoxicol Environ Saf ; 253: 114681, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36841081

RESUMO

Atrazine (ATR) is a widely applied herbicide in Asia and South America with slow natural degradation and documented deleterious effects on human and animal health, including hippocampal toxicity. However, relatively little is known about the molecular mechanisms responsible for ATR-induced hippocampal damage. Screening for differentially expressed mRNAs and microRNAs (miRNAs), and construction of potential miRNA-mRNA regulatory networks can reveal such mechanisms, so we analyzed the mRNA and miRNA expression profiles of rat hippocampus-derived H19-7 cells in response to ATR (500 µM) and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analyses. Integration of miRNA sequencing (miRNA-seq) and mRNA sequencing (mRNA-seq) results identified 114 differentially expressed miRNAs (DEMIs, 40 upregulated and 74 downregulated), and 510 differentially expressed mRNAs (DEMs, 177 upregulated and 333 downregulated) targeted by these DEMIs. The top 10 hub mRNAs (Fos, Prkcb, Ncf1, Vcam1, Atf3, Pak3, Pak1, Cacna1s, Junb, and Ccl2) and 19 related miRNAs (rno-miR-194-5p, rno-miR-24-3p, rno-miR-3074, rno-miR-1949, rno-miR-218a-1-3p, rno-miR-1843a-5p, rno-miR-1843b-5p, rno-miR-296-3p, rno-miR-320-3p, rno-miR-219a-1-3p, rno-miR-122-5p, rno-miR-1839-5p, rno-miR-1843a-3p, rno-miR-215, rno-miR-3583-3p, rno-miR-194-3p, rno-miR-128-1-5p, rno-miR-1956-5p, and rno-miR-466b-2-3p) were validated by quantitative real-time PCR. GO analysis indicated that these DEMs were enriched in genes associated with synaptic plasticity and antioxidant capacity, while KEGG analysis suggested that enriched DEMs were involved in calcium signaling, axon guidance, MAPK signaling, and glial carcinogenesis. The miRNA-mRNA regulatory network identified here may provide potential biomarkers and novel strategies for the treatment of hippocampal neurotoxicity induced by ATR.


Assuntos
Atrazina , MicroRNAs , Humanos , Ratos , Animais , Atrazina/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ásia , América do Sul , Perfilação da Expressão Gênica , Quinases Ativadas por p21/genética
12.
Foods ; 12(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673491

RESUMO

Diacylglycerol (DAG) production by microbial fermentation has broad development prospects. In the present study, five endophytic fungi which could accumulate DAG were screened from Taxus chinensis var. mairei by using potato dextrose agar plate and flask cultivation in potato dextrose broth culture medium. The strains were biologically identified based on morphological features and semi-quantitative PCR. The identification results indicated that the five strains belonged to different genera: Fusarium annulatum (F. annulatum, coded as MLP41), Trichoderma dorotheae (T. dorotheae, coded as MLG23), Colletotrichum aeschynomenes (C. aeschynomenes, coded as MLY23), Pestalotiopsis scoparia (P. scoparia, coded as MLY31W), and Penicillium cataractarum (P. cataractarum, coded as MLGP11). The crude lipids from the strains and their corresponding triacylglycerol, 1,2-DAG, and 1,3-DAG fractions separated via thin-layer chromatography were mainly composed of palmitic acid, stearic acid, oleic acid, and linoleic acid, which in total accounted for higher than 94% of the content. The effects of fermentation conditions on the DAG productivity were discussed, and the yields of DAG were determined based on the 1H NMR spectra of crude lipids. The highest total DAG yields of F. annulatum, T. dorotheae, C. aeschynomenes, P. scoparia, and P. cataractarum were 112.28, 126.42, 189.87, 105.61, and 135.56 mg/L, respectively. C. aeschynomenes had the strongest potential to produce DAG. The results showed that this may be a new promising route for the production of DAG via fermentation by specific endophytic fungi, such as C. aeschynomenes.

13.
Neurotoxicology ; 92: 122-130, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35934178

RESUMO

Diazinon (DZN) is a commonly used organophosphorus pesticide that was recently found to cause hippocampal degeneration in rodents. In this study, we elucidated the underlying molecular mechanisms through integrated network pharmacology and in vitro toxicity screening. 37 potential molecular targets of DZN-induced hippocampal neurotoxicity were predicted. Identified targets were then included in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A preliminary protein-protein network (PPI) was constructed using STRING, and the top 10 network hub target genes (Akt1, Mapk3, Tnf, Il6, Ptgs2, Il10, Il2, Il4, Creb1, and Fgf2) were screened for expression changes under DZN treatment. Cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assays revealed time- and dose-dependent toxicity of DZN against mouse hippocampus-derived HT22 cells. Acetylcholinesterase (AChE) activity assay suggested that DZN inhibited the AChE activity, and TUNEL staining revealed that DZN increased the apoptotic rate. The mRNA expression levels of 9 hub targets (all except Il10) showed significant changes during DZN treatment, and AChE activity inhibition correlated strongly with Akt1, Mapk3, Il6, Il2, and Fgf2. DZN-induced hippocampal neurotoxicity was associated with the altered activity of multiple signaling pathways (including PI3K-Akt, TNF, and apoptosis signaling). These results provided a theoretical basis for more precise elucidation of DZN neurotoxic mechanisms.


Assuntos
Diazinon , Praguicidas , Acetilcolinesterase/metabolismo , Animais , Ciclo-Oxigenase 2/metabolismo , Diazinon/toxicidade , Fator 2 de Crescimento de Fibroblastos/metabolismo , Hipocampo/metabolismo , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Lactato Desidrogenases/metabolismo , Camundongos , Farmacologia em Rede , Compostos Organofosforados , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro
14.
Risk Manag Healthc Policy ; 15: 845-864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35519502

RESUMO

Purpose: The emergence of the mutant virus has exacerbated the COVID-19 epidemic, and vaccines remain an effective and viable means of resistance. As a socially influential young group, university students' awareness and acceptance of the COVID-19 vaccine are crucial to achieving herd immunity. This study aimed to assess the awareness and acceptance of the COVID-19 vaccine among Chinese university students and identify possible factors associated with their awareness level and vaccine hesitancy. Patients and Methods: An anonymous cross-sectional survey was conducted among Chinese university students between 10 and 28 June 2021. We collected information on the demographic characteristics, awareness and acceptance of the COVID-19 vaccine, and influencing factors. Sleep disturbances and anxiety disorders were also evaluated. Multinomial logistic regression analyses were performed. Results: Among the 721 participants (aged 18 to 23 years) with a female predominance (68.9%), 40.4% of cases exhibited moderate awareness the COVID-19 vaccine, and 87.4% of cases expressed high acceptance of the vaccine. Participants' awareness of the COVID-19 vaccine was associated with gender, ethnicity, region of residence, grade level, satisfaction with current state of pandemic control, the perceived likelihood of a COVID-19 pandemic rebound, the source number of COVID-19 information, concerns about differences in vaccine manufacturers, acceptance of current state-approved vaccines and insomnia level. Furthermore, age, preferred channels for vaccination and the acceptance of current state-approved vaccines were significantly associated with their acceptance of the vaccine. Conclusion: This study reflected Chinese university students' high acceptance, but insufficient awareness of the COVID-19 vaccine, some students have insomnia and anxiety problems. These require the government to take measures such as individualized publicity and education, adding professional psychological counseling courses to improve the university students' awareness of vaccines and public health events, and comprehensively promote vaccination to cope with the ever-changing situation of the COVID-19 epidemic.

15.
Clin Interv Aging ; 17: 615-626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35502188

RESUMO

Background: Inflammation is closely associated with prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH), which is orchestrated by inflammatory cytokines. Therefore, this study aimed to investigate the levels of inflammatory cytokines in the early stage of aSAH and their predictive value for prognosis. Methods: In this retrospective study, 206 patients with aSAH were recruited and assigned to a severe group (WFNS grade ≥ 4) and a mild group (WFNS grade < 4) according to the severity of patients on admission. Flow cytometry was performed to detect the levels of 12 inflammatory cytokines in the serum of patients. Then, patients were grouped into a poor prognosis group (mRS score ≥ 4) and a good prognosis group (mRS score < 4) based on their prognosis after 3 months of discharge to compare the relationship between cytokines and prognosis. Propensity score matching (PSM) was utilized to control confounding factors. The correlation between inflammatory factors and prognosis was determined using Spearman correlation, and the predictive efficacy of inflammatory factors was tested by a receiver operating characteristic curve. Results: Serum IL-1ß, IL-5, IL-6, IL-8, IL-10, IFN-γ, and TNF-α levels were significantly higher in the mild group than in the severe group and in the poor prognosis group than in the good prognosis group. After PSM, the differences in IL-1ß, IL-5, IFN-α, and IFN-γ levels disappeared between the two groups, whereas IL-2, IL-6, IL-8, IL-10, and TNF-α levels remained higher in the poor prognosis group than in the good prognosis group. Additionally, IL-2, IL-6, IL-8, and IL-10 levels were positively correlated with mRS scores. Moreover, the predictive value was found to be the highest for IL-6 and the lowest for TNF-α. Conclusion: Inflammation degree was related to the severity of aSAH. Inflammatory markers, including IL-6, IL-10, IL-8, IL-2, and TNF-α, might predict the poor prognosis of aSAH.


Assuntos
Hemorragia Subaracnóidea , Citocinas , Humanos , Inflamação/complicações , Interleucina-10 , Interleucina-2 , Interleucina-5 , Interleucina-6 , Interleucina-8 , Estudos Retrospectivos , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/diagnóstico , Fator de Necrose Tumoral alfa
16.
Toxicol Mech Methods ; 32(4): 259-267, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34663174

RESUMO

Atrazine (ATR), a commonly applied herbicide in agriculture, has been found to cause hippocampal injury in rodents. However, the underlying toxicological targets and mechanisms are unclear. In this study, network pharmacology analysis and in vitro model were integrated to investigate the effect and mechanism of ATR-induced hippocampal neurotoxicity. In total, 71 targets of hippocampal neurotoxicity induced by ATR were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) enrichment analysis suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate the underlying mechanisms, the top 10 hub targets were screened and included tumor protein p53 (Tp53), caspase 3 (Casp3), prostaglandin-endoperoxide synthase 2 (Ptgs2), cAMP-responsive element-binding protein 1 (Creb1), estrogen receptor 1 (Esr1), Jun proto-oncogene (Jun), brain-derived neurotrophic factor (Bdnf), catalase (Cat), sirtuin 1 (Sirt1) and Fos proto-oncogene (Fos). Moreover, the cell counting kit-8 (CCK8) and lactate dehydrogenase (LDH) assay showed that ATR had time and dose-dependent cytotoxicity on H19-7 cells. TUNEL staining revealed that ATR increased the apoptotic ratio. In addition, Real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that the mRNA expression levels of all hub targets showed significant changes, except Esr1 and Jun. Our study demonstrated that ATR mainly acted on multiple targets and signaling pathways to exert its hippocampal neurotoxicity. These results provided initial evidence for the further exploration of the toxicological mechanism of ATR.


Assuntos
Atrazina , Medicamentos de Ervas Chinesas , Síndromes Neurotóxicas , Atrazina/toxicidade , Hipocampo , Humanos , Farmacologia em Rede , Síndromes Neurotóxicas/etiologia
17.
J Am Heart Assoc ; 11(1): e022633, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34970911

RESUMO

Background We aimed to evaluate the association between the Chinese visceral adiposity index (CVAI) and its dynamic change and risk of carotid plaque based on a large Chinese cohort. Methods and Results This cohort included 23 522 participants aged 20 to 80 years without elevated carotid intima-media thickness and carotid plaque at baseline and who received at least 2 health checkups. CVAI was calculated at baseline and at every checkup. The dynamic change in CVAI was calculated by subtracting CVAI at baseline from that at the last follow-up. Cox proportional hazard regression model was used to estimate hazard ratios (HRs) and 95% CIs. The restricted cubic spline was applied to model the dose-response association between CVAI and carotid plaque risk. During the 82 621 person-years of follow-up, 5987 cases of carotid plaque developed (7.25/100 person-years). We observed a significant positive correlation between CVAI and carotid plaque risk (HR, 1.53; 95% CI, 1.48-1.59 [P<0.001]) in a nonlinear dose-response pattern (Pnonlinearity<0.001). The sensitivity analyses further confirmed the robustness of the results. The association was significant in all subgroup analyses stratified by sex, hypertension, and fatty liver disease except for the diabetes subgroup. The association between CVAI and carotid plaque risk was much higher in men than in women. No significant association was identified between change in CVAI and carotid plaque risk. Conclusions CVAI was positively associated with carotid plaque risk in a nonlinear dose-response pattern in this study. Individuals should keep their CVAI within a normal level to prevent the development of carotid plaque.


Assuntos
Adiposidade , Placa Aterosclerótica , Adulto , Idoso , Idoso de 80 Anos ou mais , Espessura Intima-Media Carotídea , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade Abdominal/complicações , Placa Aterosclerótica/complicações , Fatores de Risco , Adulto Jovem
18.
Bioengineered ; 12(2): 9279-9289, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34714723

RESUMO

Cypermethrin (CMN) is a widely used artificial synthetic pesticide that causes neurotoxicity in the hippocampus. However, the underlying toxicological targets and mechanisms remain unclear. In this study, network pharmacology analysis and in vitro models were integrated to investigate the effect and mechanism of CMN-induced hippocampal neurotoxicity. A total of 88 targets of CMN-induced hippocampal neurotoxicity were predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG) analyses suggested that these targets were related to multiple GO terms and signaling pathways. To further investigate underlying mechanism, the top 10 hub targets (Akt1, Tnf, Ptgs2, Casp3, Igf1, Sirt1, Jun, Cat, Il10, and Bcl2l1) were screened. Furthermore, cell viability and lactate dehydrogenase (LDH) assays demonstrated that CMN was toxic to HT22 cells in a time- and dose-dependent manner. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining revealed that treatment with CMN increased the proportion of apoptotic cells. In addition, the real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that CMN altered the mRNA expression levels of most of the hub targets, with the exceptions of Igf1 and Jun. The results demonstrated that multiple targets and signaling pathways were involved in CMN-induced hippocampal neurotoxicity. These findings provided reference values for subsequent studies of the toxicological mechanism of CMN.


Assuntos
Hipocampo/patologia , Farmacologia em Rede , Neurotoxinas/toxicidade , Piretrinas/toxicidade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Camundongos , Mapas de Interação de Proteínas/efeitos dos fármacos , Piretrinas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
19.
Front Psychol ; 12: 684830, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177739

RESUMO

At the outbreak of coronavirus disease in Wuhan, China, 42,322 medical personnel from other provinces and municipalities in China volunteered to rush to Hubei to assist their colleagues. Their all-out efforts contributed to Hubei finally winning the fight to prevent and control the pandemic. The aim of this study is to explore the influence of perceived organizational support on the emotional labor of medical personnel in Hubei Province. A group of 170 medical personnel from (tertiary) hospitals who participated in the pandemic aid operation in Hubei completed self-administered questionnaires, including the perceived organizational support scale, emotional labor scale, and professional identity scale. This study used Pearson's correlation in SPSS to analyze the three variables of organizational support, emotional labor, and professional identity. Organizational support and emotional labor (r = 0.443, P < 0.01), organizational support and professional identity (r = 0.631, P < 0.01), and emotional labor and occupational identity (r = 0.511, P < 0.01) showed a significant positive correlation. The bootstrapping mediating effect test was used to determine the overall mediating effect of occupational identity. Occupational identity was a complete mediating effect between organizational support and emotional labor. The results show that a strong sense of organizational support can promote higher emotional labor among medical workers in Hubei Province. A strong sense of organizational support will also promote a stronger professional identity; further, a strong professional identity completely mediates the effect of perceived organizational support on emotional labor. These results infer that in emergency medical and health services, medical personnel can realize a high sense of organizational support, which could enhance their professional identity; this enables them to combine their professional goals with organizational goals more actively and to finally pay higher emotional labor to achieve organizational goals.

20.
Cancer Med ; 10(14): 4964-4976, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145793

RESUMO

X chromosome change has been proved to be associated with carcinogenesis and related to gender differences in cancer risk. If aberrant methylation of genes encoded by X chromosome involve in the risk and prognosis of cancers, including colorectal cancer (CRC), remain unclear. We conducted a case-control study consisted of 432 CRC cases and 434 controls, detecting the methylation levels of FAM156B, PIH1D3, and PPP1R3F in the X chromosome in blood leukocytes using methylation-sensitive high-resolution melting (MS-HRM). We analyzed the relationship between the methylation levels and CRC susceptibility and then explored the interactions with environmental factors on CRC risk with logistics regression. Moreover, we conducted a follow-up study containing 225 CRC patients to explore the associations between the methylation of FAM156B, PPP1R3F, and PIH1D3 and CRC prognosis. The hypermethylation of FAM156B, PPP1R3F, and PIH1D3 was related to increased CRC risk (ORPS-adj  = 2.932, 95% confidence interval [CI]: 2.029-4.237; ORPS-adj  = 1.602, 95% CI: 1.078-2.382; ORPS-adj  = 1.628, 95% CI: 1.065-2.490, respectively). In the multiple CpG site methylation (MCSM) analysis, compared with non-MCSM, a significant relationship between MCSM and increased CRC risk was found (ORPS-adj  = 2.202, 95% CI: 1.512-3.208). We observed synergistic interaction between PPP1R3F hypermethylation and fried food consumption on CRC risk (ORi  = 2.682, 95% CI: 1.321-5.446). However, there were no associations between the methylation of FAM156B, PPP1R3F, and PIH1D3 and CRC prognosis (p > 0.05). In conclusion, the methylation of FAM156B, PPP1R3F, and PIH1D3 genes in blood leukocytes is significantly related to CRC risk and may be potential biomarkers for CRC risk but not prognosis.


Assuntos
Cromossomos Humanos X/genética , Neoplasias Colorretais/genética , Metilação de DNA , Peptídeos e Proteínas de Sinalização Intracelular/genética , Leucócitos , Proteínas de Membrana/genética , Fosfoproteínas Fosfatases/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Interação Gene-Ambiente , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Risco , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA