Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 165: 112431, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869467

RESUMO

This study investigated the effect of dense phase carbon dioxide (DPCD) treatment on the organoleptic properties of new-paocai. Optimal DPCD treatment (25 MPa/40 °C/40 min) was determined by conducting single-factor and orthogonal experiments with the sensory, bactericidal, and electronic eye evaluations. DPCD treatment (25 MPa/40 °C/40 min) did not significantly affect the nitrite, pH, total acid, and organic acid of the new-paocai brine, and the texture of the radish slices did not display substantial changes. Gas chromatography-mass spectrometry (GC-MS) was employed to characterize the new-paocai brine flavor, revealing 63 and 60 respective flavor compounds with and without DPCD treatment. In addition, DPCD treatment significantly reduced the total organic volatile compound content in the paocai from 48.182 µg/mL to 35.952 µg/mL, DPCD has a great influence on volatile flavor substances. The electronic nose (E-nose) effectively distinguished the flavor differences in the new-paocai brine with and without DPCD treatment. This study combined new food processing technology with traditional food production, could provide a new idea for pickle production technology.


Assuntos
Antibacterianos , Dióxido de Carbono , Nariz Eletrônico , Alimentos
2.
Food Sci Technol Int ; 29(5): 518-528, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35491658

RESUMO

Blueberry juice has been found to undergo severe browning after treatment and cold storage, such as processing by high hydrostatic pressure (HHP) at 550 MPa/10 min/25 °C followed storage at 4 °C for 4 days. This browning may be due to the degradation of anthocyanin (AC) in the berries. Therefore, in this study, gallic acid (GA), ferulic acid (FA), ascorbic acid (VC), citric acid (CA), tea polyphenol (TP) and α-tocopherol (VE) were compared to determine their ability to improve the stability of the AC in HHP-treated blueberry juice. The juice was combined with the six abovementioned antioxidants at different concentrations, then treated by HHP at 550 MPa/10 min/25 °C and stored at 4 °C for 20 days. Thereafter, the pH levels, degrees °Brix, color parameters, total AC content and polyphenol oxidase (PPO) activity of the blueberry juice blend were measured and compared. Gallic acid at 2 g/L was found to be the most effective antioxidant to protect against AC degradation. After storage at 4 °C for 20 days, the AC content of the juice with no added antioxidants had decreased by 62.27% with a PPO relative activity of 50.78%, while the AC content of juice supplemented with 2 g/L GA had decreased by 13.42% with a PPO relative activity of 28.13%. The results of this study, thus, suggest that GA can stabilize the structure of AC in blueberry juice and reduce PPO activity, which may be beneficial in guiding the production of blueberry juice with high AC retention.


Assuntos
Antioxidantes , Mirtilos Azuis (Planta) , Antioxidantes/análise , Antocianinas/análise , Pressão Hidrostática , Mirtilos Azuis (Planta)/química , Frutas/química , Ácido Gálico/análise , Cor
3.
J Food Sci ; 88(1): 315-327, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36510380

RESUMO

A starch-rich portion is produced as a by-product of black Tartary buckwheat processing. The effect of enzymatic combined with autoclaving-cooling cycles (one, two, or three times) on the physicochemical and structural properties of black Tartary buckwheat type 3 resistant starch (BRS) was evaluated. The autoclaving-cooling cycles enhanced solubility and reduced swelling, with the BRS content increasing from 14.12% to 25.18%. The high crystallinity of the BRS reflected a high molecular order. However, increasing the number of autoclaving-cooling cycles did not result in higher BRS content. The highest BRS yield in the autoclaved starch samples was 25.18% after double-autoclaving-cooling cycles. Furthermore, the autoclaving-cooling cycles altered the crystalline structure of black Tartary buckwheat, and the subsequent crystallinity changed from 36.33% to 42.05% to 38.27%. Fourier-transform infrared spectroscopy shows that the number of cycles results in more efficient double-helical packing within the crystalline lamella. Principal component analysis showed that the autoclaving-cooling cycle treatment leads to significant changes in the molecular structure of resistant starch (RS). These results indicated that autoclaving-cooling cycles might be a feasible way for producing RS from black Tartary buckwheat starch with better structural stability to expand their application range.


Assuntos
Fagopyrum , Amido Resistente , Fagopyrum/química , Amido/química , Transição de Fase
4.
J Food Sci ; 88(1): 328-340, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36510379

RESUMO

This study synthesized titanium dioxide (TiO2 ) nanoparticles (NPs) from mango leaf extract and investigated the features and antibacterial capabilities of three different. The microscopic morphological observation, scanning electron microscopy, and transmission electron microscopy results showed that all three NPs showed agglomeration phenomenon, and the TN-1 sample existed as large agglomerates, whereas the agglomeration phenomenon of TN-3 sample was improved by the modified, without large agglomerates. The biosynthetic TN-2 and TN-3 NPs were spherical and uniform in size, whereas those of the TN-3 sample was the smallest, ranging from 10 to 30 nm. X-ray diffraction and Raman spectroscopy results exhibited that these were highly pure anatase NPs. The result of ultraviolet (UV)-visible-near-infrared spectral analysis showed that the TN-2 and TN-3 samples displayed higher UV absorption properties than the TN-1 samples and were highest in the modified NPs, which was more suitable for preparing chitosan-based nanocomposite material in future experiments and studies. The colony diameters of the TN-1, TN-2, and TN-3 treatment groups were 7.99, 7.80, and 6.86 mm, respectively, after 120 min of UV light induction at a wavelength of 365 nm. Significant differences were evident between the TN-3 and the other two groups (p < 0.05), indicating that the TN-3 sample more effectively inhibited Penicillium steckii than the other TiO2 NPs. PRACTICAL APPLICATION: Nanomaterials coated film preservation is widely used in fruit and vegetable preservation. In this paper, TiO2 nanomaterials will be green synthesized using mango leaf and structurally characterized, whereas antibacterial tests will be conducted against the mango fruit-specific bacterium Penicillium steckii, which will provide a theoretical basis for the storage and preservation of mango.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antifúngicos/farmacologia , Nanopartículas/química , Titânio/farmacologia , Titânio/química , Antibacterianos/farmacologia , Antibacterianos/química , Difração de Raios X , Nanopartículas Metálicas/química
5.
J Food Sci ; 87(7): 2980-2998, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35638346

RESUMO

This experiment aimed to investigate the effects of four drying methods, namely, hot air drying (HAD), microwave drying (MD), vacuum drying (VD), and microwave vacuum drying (MVD), on the quality of lemon slices. The relevant indicators, including total phenolic content, ascorbic acid content, browning, color, reducing sugar content, volatile component measurements, and principal component analysis of 0 and 30 days storage, were compared after exposure to the four drying methods. The shortest time of 64 min was used to treat the lemon slices via MVD at 1 KW. These samples displayed the least damage after drying and the highest rehydration ratio of 4.12. The contents of VC, reducing sugars, and total phenols of MVD samples were significantly higher than those in the HAD, VD, and MD groups, retaining 105.94 mg/100 g, 21.35 g/100 g, and 77.81 mg GAE/g, respectively, while their color difference values were also the smallest, with a browning degree of 3.55, significantly lower than those in the other treatment groups (p < 0.05), and the degree of browning of the samples in the HAD treatment group was the most serious; in terms of volatile flavor substances, the lemon slice samples in the MVD and HAD treatment groups were more diverse and of better quality. The order of product sensory evaluation was: MVD > VD > HAD > MD. The final scores after comprehensive analysis revealed the order of the four drying methods as MVD, HAD, VD, and MD. Therefore, MVD had a better effect on the sensory perception and nutritional properties of the lemon slices, providing a useful alternative to the conventional drying method. PRACTICAL APPLICATION: Lemon slices during drying are affected by various aspects, leading to changes in its color, aroma substances, and nutrient composition. The results of this work will not only provide a technical reference for the future production of high-quality dried lemon slices, but also have important implications for fresh-cut lemons in processing and storage. It also generates important implications for fresh-cut lemons in processing and storage.


Assuntos
Dessecação , Micro-Ondas , Ácido Ascórbico/análise , Dessecação/métodos , Fenóis/análise , Vácuo
6.
J Food Prot ; 85(4): 597-606, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020918

RESUMO

ABSTRACT: This study was conducted to investigate the UV light-induced effect of chitosan-titanium dioxide-silver (CTS-TiO2-Ag) nanocomposite film solution against Penicillium steckii and the underlying physiological mechanism of this effect. With longer UV exposure time, pathogen inhibition increased. UV-photoinduced treatment for 120 min produced the smallest P. steckii colony diameter, at 4.85 mm. However, when this treatment was followed by 8 h of storage, the conductivity of the P. steckii culture medium reached its highest level, at 713 microsiemens per cm. After a 120-h growth period on mangoes under the same conditions, the lesion diameters and proportion of infected mangoes reached 12.61 mm and 41.67%, respectively. Because the P. steckii cell membrane was severely disrupted, its permeability increased, causing serious extravasation of intracellular protein and nucleic acid material. Malondialdehyde, catalase, and superoxide dismutase in the P. steckii cells reached maximum concentrations (2.1106 µmol/mL, 44.06 U/mL, and 24.67 U/mL, respectively) after 8 h of incubation. These results indicate significant P. steckii inhibition by the UV light induction of the CTS-TiO2-Ag nanocomposite film solution.


Assuntos
Quitosana , Antifúngicos/farmacologia , Quitosana/farmacologia , Prata/farmacologia , Titânio/farmacologia
7.
Food Chem ; 372: 131243, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655831

RESUMO

High pressure processing (HPP) exhibited different effect on polyphenol oxidase (PPO), but the conformational changes was not clear yet. In this study, molecular dynamics simulation combined with spectroscopic experiments were used to explore PPO conformational changes under high pressure at the molecular level. The simulation results showed that high pressure decreased volume and hydrogen bonds, induced changes in active center and movement of loop. Especially, the conformational changes under 200 and above 400 MPa were different. Under 200 MPa, the distance between His 61 and Cu decreased by 0.4 Å, active pocket was exposed, substrate channel became larger. However, the distance increased by 6.1 Å under 600 MPa, active pocket moved inward, substrate channel became narrower. Docking results of 200 and 600 MPa had the highest and lowest binding affinity, whose T-score was 4.657 and 4.130, respectively. These results were consistent with spectroscopic experiments of PPO after HHP.


Assuntos
Catecol Oxidase , Simulação de Dinâmica Molecular , Catecol Oxidase/metabolismo , Manipulação de Alimentos , Temperatura Alta , Pressão
8.
Molecules ; 26(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641384

RESUMO

Five different ultrafine milled flours (UMFs) were prepared from Tartary buckwheat via airflow ultrafine-grinding at different grinding pressures. The airflow ultrafine-grinding resulted in marked differences in particle size (from 100 to 10 µm). The UMFs were all brighter in appearance (higher L*) than Tartary buckwheat common flour (TBCF). Illustrated by the example of 70 °C, the UMFs were also found to have a greater water holding capacity (from 4.42 g/g to 5.24 g/g), water solubility (from 12.57% to 14.10%), and water solubility index (from 5.11% to 6.10%). Moreover, as the particle sizes reduced, the moisture content decreased (from 10.05 g/100 g DW to 7.66 g/100 g DW), as did the total starch content (from 68.88 g/100 g DW to 58.24 g/100 g DW) and the protein content (from 13.16% to 12.04%). However, the grinding process was also found to have negative effects on the mineral content of the Tartary buckwheat. Additionally, several substantial variations were found in their hydration properties along with grinding pressure changes in the differently ground UMFs. Consequently, fine Tartary buckwheat powders of a bright yellow color, with superior food processing properties, were prepared in this study by airflow ultrafine-grinding.


Assuntos
Fagopyrum/química , Farinha/análise , Manipulação de Alimentos/métodos , Minerais/análise , Pós/química , Água/química , Fenômenos Químicos , Pós/análise , Solubilidade
9.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361552

RESUMO

Postharvest pathogens such as C. gloeosporioides (MA), C.oxysporum (ME) and P. steckii (MF) are the causal agents of disease in mangoes. This paper presents an in vitro investigation into the antifungal effect of a chitosan (CTS)/nano-titanium dioxide (TiO2) composite coating against MA, ME and MF. The results indicated that, the rates of MA, ME and MF mortality following the single chitosan treatment were 63.3%, 84.8% and 43.5%, respectively, while the rates of mycelial inhibition were 84.0%, 100% and 25.8%, respectively. However, following the addition of 0.5% nano-TiO2 into the CTS, both the mortality and mycelial inhibition rates for MA and ME reached 100%, and the mortality and mycelial inhibition rate for MF also increased significantly, reaching 75.4% and 57.3%, respectively. In the MA, the dry weight of mycelia after the CTS/0.5% nano-TiO2 treatment decreased by 36.3% in comparison with the untreated group, while the conductivity value was about 1.7 times that of the untreated group, and the protein dissolution rate and extravasation degree of nucleic acids also increased significantly. Thus, this research revealed the potential of CTS/nano-TiO2 composite coatings in the development of new antimicrobial materials.


Assuntos
Antifúngicos , Quitosana , Colletotrichum/crescimento & desenvolvimento , Nanocompostos , Titânio , Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/química , Quitosana/farmacologia , Mangifera/microbiologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Doenças das Plantas/microbiologia , Titânio/química , Titânio/farmacologia
10.
Nanomaterials (Basel) ; 10(7)2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32668677

RESUMO

In this investigation, the effect of different concentrations of titanium dioxide (TiO2) nanoparticles (NPs) on the structure and antimicrobial activity of chitosan-based coating films was examined. Analysis using scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the modified TiO2 NPs were successfully dispersed into the chitosan matrix, and that the roughness of the chitosan-TiO2 nanocomposites were significantly reduced. Moreover, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses indicated that the chitosan interacted with TiO2 NPs and possessed good compatibility, while a thermogravimetric analysis (TGA) of the thermal properties showed that the chitosan-TiO2 nanocomposites with 0.05% TiO2 NPs concentration had the best thermal stability. The chitosan-TiO2 nanocomposite exhibited an inhibitory effect on the growth of Escherichia coli and Staphylococcus aureus. This antimicrobial activity of the chitosan-TiO2 nanocomposites had an inhibition zone ranging from 9.86 ± 0.90 to 13.55 ± 0.35 (mm). These results, therefore, indicate that chitosan-based coating films incorporated with TiO2 NPs might become a potential packaging system for prolonging the shelf-life of fruits and vegetables.

11.
Ultrason Sonochem ; 67: 105144, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32361277

RESUMO

This study investigated the effects of high-power ultrasound (HPU, 0-45 °C, 242-968 W/cm2, 2-16 min) on the rheological properties of strawberry pulp. Following the HPU treatment, the strawberry pulp exhibited an increase in apparent viscosity, storage modulus (G'), and loss modulus (G″). The water-soluble pectin (WSP), pectin methylesterase (PME) activity, and free calcium ions (Ca2+) of the strawberry pulp after HPU treatment were investigated to determine a possible reason for this phenomenon. HPU caused a significant decrease in the degree of esterification (DE), molecular weight (Mw), and particle size of strawberry WSP, but no significant changes were evident in the galacturonic acid (GalA) content and the zeta (ζ)-potential (P > 0.05), resulting in decrease in the apparent viscosity. Moreover, the largest reduction of PME activity was 22.6% after HPU treatment at 605 W/cm2 and 45 °C for 16 min, indicating that the PME was resistant to the HPU treatments. The free Ca2+ content in the strawberry pulp was significantly decreased after exposure to HPU (P < 0.05). The maximal reduction of 52.01% in the free Ca2+ was achieved at 605 W/cm2 and 45 °C for 16 min. The overall results indicated that the high residual activity (RA) of PME after HPU might induce the low esterification of WSP, while HPU promoted the interaction of free Ca2+ and low-methylated pectin, to form the network structure of Ca2+-low-methylated pectin, resulting in an increase in viscosity in the complex strawberry system.


Assuntos
Fragaria , Reologia , Sonicação , Peso Molecular , Viscosidade
12.
Foods ; 9(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092935

RESUMO

Changes in the microbial, physicochemical, and sensory properties of blended strawberry-apple-lemon juice were investigated to comparatively assess the influence of three processing treatments, namely high hydrostatic pressure (HHP) (500 MPa/15 min/20 °C), ultrasound (US) (376 W/10 min/35 °C), and heat treatment (HT) (86 °C/1 min) over 12 days of storage at 4 °C. The results showed that the total aerobic bacteria (TAB) counts in the HHP-, US-, and HT-treated juice blends were less than 2 log10 CFU/mL, the yeast and mold (Y & M) counts were less than 1.3 log10 CFU/mL, and the coliforms most probable number (MPN/100 mL) was less than 3 after 10 days at 4 °C. Anthocyanins were maintained by HHP, but decreased by 16% and 12% after US and HT, respectively. Total phenols increased by 18% and 7% after HHP and US, respectively, while they were maintained by the HT. Furthermore, better maintenance of total phenols, total anthocyanins, ascorbic acid, antioxidant capacity, color, and sensory values were observed in the HHP-treated juice blend stored for 10 days at 4 °C, compared to both the US- and HT-treated samples. Therefore, HHP was proposed to be a better processing technology for juice blend.

13.
RSC Adv ; 10(48): 28746-28754, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520072

RESUMO

Thaumatin-like protein-1 (TLP-1), a protein displaying high polyphenol oxidase (PPO) action and a member of the pathogenesis-related (PR) protein family, has a considerable influence on the enzymatic browning of Prunus mume (Chinese plum). In this assay, TLP-1 was identified and extracted from Prunus mume to investigate the protein's properties and better understand its contribution to the fruit's browning during storage or processing. The extracted TLP-1 was purified to apparent homogeneity using a procedure involving citrate phosphate buffer solution (CPBS) extraction, (NH4)2SO4 precipitation, dialysis in a cellulose bag, and ion exchange chromatography using a DEAE Sepharose Fast Flow column, while a Sephadex G-75 column was employed to facilitate gel filtration chromatography. Moreover, the enzyme was characterized in terms of its optimal pH and stability, isoelectric point (pI), molecular weight, optimal temperature and stability, enzyme kinetic parameters and substrate specificity, as well as inhibitor stability. This study indicated that the pI and molecular weight of TLP-1 was approximately 4.4 and 28 kDa, respectively, while 30 °C and 7.5 represented the respective optimal temperature and pH level for PPO catalysis. TLP-1 showed high affinity to catechol and pyrogallol, with K m values of 24.40 mM and 26.23 mM, respectively. Sodium bisulfite significantly inhibited TLP-1 activity. These findings on the properties of TLP-1 can contribute significantly to the search for ways to minimize the losses caused by fruit browning during the storage and processing of Prunus mume.

14.
RSC Adv ; 10(52): 31333-31341, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-35520660

RESUMO

The objective of this study is to investigate the effects of high pressure processing (HPP) on the quality of mango smoothies and the inactivation of microorganisms therein, with heat treatments used as the control. Comparative analysis was conducted on the microbiological changes in the mango smoothies subjected to HPP at 400-600 MPa for 0-15 min. The total plate count (TPC) and the yeast and mold (YM) counts were found to be significantly inactivated through increases in the pressure and treatment time (p < 0.05). Conditions of 90 °C/20 min (HT), 500 MPa/8 min (HPP-500) and 600 MPa/5 min (HPP-600) were, thus, selected as the subsequent treatment for a storage study at 4 °C for 15 days, since these conditions had similar inactivation effects on TPC and YM. After 15 days of storage, the TPC was found to have increased by 3.87, 3.54 and 3.36 log10 cycles in the mango smoothies treated by HT, HPP-500 and HPP-600, respectively, while the YM counts remained at less than 1 log10 cycle in all samples. During storage, compared to the HT and HPP-600 samples, both the color and viscosity at 100 s-1 of samples treated by HPP-500 were found to be better maintained. Carotene content was better retained in storage after the HPP process than after the HT process. However, the different treatments had no effect on the pH nor on the total soluble solids (TSS) in the samples. The study ascertained that HPP-500 is able to ensure both the microbial safety and the quality of mango smoothies more effectively than HT and HPP-600.

15.
Ultrason Sonochem ; 60: 104763, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31539729

RESUMO

An investigation was conducted into the utilization of treatments combining ultrasound and lysozyme (US + Lys) to deactivate Salmonella typhimurium (S. typhimurium) in the liquid whole egg (LWE). Furthermore, US + Lys and heat treatment (HT) with a similar microbial inactivation effect were comparatively evaluated by examining their impact on the quality attributes of LWE. The LWE was treated with US at 35-45 °C and 605-968 W/cm2 for 5-35 min, and with HT at 58-64 °C for 3-4 min. Lysozyme (Lys) alone achieved a minimal degree of inactivation in S. typhimurium, while it was enhanced with the application of US alone when the treatment temperature, time, and energy were increased. Furthermore, US and US + Lys caused a reduction of 3.31 and 4.26 log10 cycles in S. typhimurium, respectively at 968 W/cm2 and 35 °C for 20 min, indicating a synergistic relationship between US and Lys for the effective inactivation of S. typhimurium. Similarly, HT and HT + Lys achieved a reduction of 4.10 and 4.75 log10 cycles at 64 °C/3 min, respectively. The L* and b* values of the LWE following US and US + Lys application were significantly higher than untreated and heat-treated LWE, indicating that US treated LWE had a brighter and yellower appearance. The protein solubility (PS) slightly decreased after all treatments, while the pH increased. Furthermore, the foaming capacity (FC) and foam stability (FS) were decreased, revealing that LWE had a lower FC and unstable foam after all treatments. Therefore, US and US + Lys could increase the viscosity and gelation temperature (Tg) of LWE, indicating that LWE exhibited higher heat resistance after US treatment. These results indicated that US + Lys might be a promising pasteurization technology in the processing of LWE.


Assuntos
Ovos/microbiologia , Microbiologia de Alimentos , Conservação de Alimentos , Muramidase/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Ondas Ultrassônicas , Contagem de Colônia Microbiana , Conservação de Alimentos/métodos , Viabilidade Microbiana , Reologia
16.
Biomed Res Int ; 2019: 6917147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317036

RESUMO

'Eureka' lemon fruits were stored under four controlled atmosphere- (CA-) combinations at 8°C for 20 days to investigate the effects on weight loss (WL), total soluble solids (TSS), titratable acidity (TA), vitamin C (VC), total phenolic content (TPC), sodium carbonate-soluble pectin (SSP), malondialdehyde (MDA), and volatile compounds. Results showed that the contents of TSS, TA, VC, and SSP in the stored fruits reduced during the storage period, while the WL and MDA increased. Fruit stored under CA2-combination (6 % O2+8 % CO2) showed the lower contents of WL and MDA and the higher content of TSS, TA, TPC, and VC than that of other treated fruits. The main volatile compounds present in the lemons were terpenoids, aldehydes, alcohols, and esters. In addition, both the terpenoid and aldehyde content are substantially higher in lemons exposed to CA2 conditions. In contrast, the alcohols and esters displayed elevated levels in the regular air (RA) stored fruit. In conclusion, CA with the suitable conditions proves to be better than RA as a storage regimen to keep the quality of lemons. These results indicated that the application of 6% O2+8% CO2 CA conditions could maintain the quality of 'Eureka' lemon fruit during the storage time of 20 days and should be the optimal storage environment for postharvest Eureka lemons.


Assuntos
Ácido Ascórbico/química , Armazenamento de Alimentos , Frutas , Melissa , Atmosfera , Conservação de Alimentos , Humanos , Odorantes/análise , Fenóis/química
17.
Molecules ; 24(9)2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-31052263

RESUMO

Edible coatings and films (ECF) are employed as matrixes for incorporating antimicrobial nanoparticles (NPs), and then they are applied on the fruits and vegetables to prolong shelf life and enhance storage quality. This paper provides a comprehensive review on the preparation, antimicrobial properties and mechanisms, surface and physical qualities of ECF containing antimicrobial NPs, and its efficient application to vegetables and fruits as well. Following an introduction on the properties of the main edible coating materials, the preparation technologies of ECF with NPs are summarized. The antimicrobial activity of ECF with NPs against the tested microorganism was observed by many researchers. This might be mainly due to the electrostatic interaction between the cationic polymer or free metal ions and the charged cell membrane, the photocatalytic reaction of NPs, the detachment of free metal ion, and partly due to the antimicrobial activity of edible materials. Moreover, their physical, mechanical and releasing properties are discussed in detail, which might be influenced by the concentration of NPs. The preservation potential on the quality of fruits and vegetables indicates that various ECF with NPs might be used as the ideal materials for food application. Following the introduction on these characteristics, an attempt is made to predict future trends in this field.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Conservação de Alimentos , Frutas , Nanopartículas/química , Verduras , Fenômenos Químicos , Quitosana , Embalagem de Alimentos , Conservação de Alimentos/métodos , Conservantes de Alimentos , Fenômenos Mecânicos , Estrutura Molecular
18.
Food Sci Technol Int ; 25(5): 394-403, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30696272

RESUMO

The effect of high-power ultrasound treatment on enzymes' activity, physicochemical attributes (total soluble solids, pH, viscosity, turbidity, particle size distribution and colour) and carotenoids' content of carrot juice was investigated. The treatments were carried out at 20 kHz (0.95, 2.38, 3.80 W/ml power) in an ice bath for 2, 4, 6, 8, 10 min. The polyphenol oxidase and pectin methylesterase activity were decreased by 43.90 and 37.95% at 3.80 W/ml power and 10 min exposure time, respectively. With the increase of power and time, the effect of high-power ultrasound on the inactivation of enzymes was getting stronger. However, high-power ultrasound had no inactivation effect on peroxidase activity under all treatment conditions. The visual colour differences were not obvious after high-power ultrasound. The pH, total soluble solids and particle size distribution of carrot juice were not significantly affected (p > 0.05) under all treatment conditions, while turbidity was increased and carotenoids' content was decreased. The viscosity of carrot juice was decreased by 1.27% at 0.95 W/ml power and 8 min, while it was increased by 2.29% at 2.38 W/ml power and 8 min. The value of viscosity was negatively correlated with the activity of pectin methylesterase (Pearson's r = -0.481, p < 0.05). According to these results, we could conclude that the optimal treatment condition was 3.80 W/ml for 10 min. Overall, high-power ultrasound treatment inhibited browning, maintained taste and nutritional value and improved stability of carrot juice. Therefore, this technology could well be an option for processing of carrot juice and laid the theoretical foundation for the production of carrot juice and carrot compound beverage.


Assuntos
Daucus carota/química , Irradiação de Alimentos/efeitos adversos , Sucos de Frutas e Vegetais/análise , Valor Nutritivo , Ondas Ultrassônicas/efeitos adversos , Hidrolases de Éster Carboxílico/metabolismo , Carotenoides/análise , Catecol Oxidase/metabolismo , Fenômenos Químicos , Daucus carota/enzimologia , Daucus carota/efeitos da radiação , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/efeitos da radiação , Viscosidade
19.
J Food Prot ; 81(6): 993-1000, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29757008

RESUMO

The aim of this study was to investigate the inactivation of nonpathogenic Escherichia coli in nutrient broth and milk through the use of either ultrasound (US) alone or US combined with nisin (US + nisin) treatments. The E. coli cells were treated at 0 to 55°C, 242.04 to 968.16 W/cm2 for 0 to 15 min. The results showed that the inactivation of E. coli by US and US + nisin increased when the temperature, US power density, and treatment time were increased. The inactivation kinetics of E. coli in nutrient broth by US and US + nisin both conformed to linear models. The largest reductions of 2.89 and 2.93 log cycles by US and US + nisin, respectively, were achieved at 968.16 W/cm2 and at 25°C for 15 min. The suspension media of the E. coli cells influenced the inactivation effect of US, while the growth phases of E. coli cells did not affect their resistance to US. Under all experiment conditions of this study, the differences between US and US + nisin in their respective inactivation effects on E. coli were not obvious. The results suggested that nisin had either no effect at all or a weak synergistic effect with US and that the E. coli cells were inactivated mainly by US, thus indicating that the inactivation of E. coli by US is an "all or nothing" event.


Assuntos
Escherichia coli , Manipulação de Alimentos/métodos , Leite/microbiologia , Nisina , Ultrassom , Animais , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Nisina/farmacologia , Temperatura
20.
J Sci Food Agric ; 98(14): 5378-5385, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29660118

RESUMO

BACKGROUND: The objective of the present work was to study the effect of high-power ultrasound (HPU) on the microflora, enzymes and some quality attributes of a strawberry drink and to provide a theoretical basis for strawberry drink processing conducive to the development of more nutritious and healthier strawberry drinks. RESULTS: Fresh strawberry drink was subjected to HPU treatment at 20 kHz (242, 605 and 968 W cm-2 ) for 2, 4, 6, 8 and 10 min in an ice bath. Results showed that polyphenol oxidase (PPO), pectin methyl esterase (PME) and ß-glucosidase activities were decreased by 44.90, 89.11 and 84.71% respectively at 968 W cm-2 for 10 min. Lower L*, a* and b* values and higher browning degree (BD) were observed in HPU-treated samples, resulting in a significant increase in ΔE value (P < 0.05). HPU treatment caused loss of viscosity and turbidity, while total soluble solids (TSS) and pH of the strawberry drink were stable. Total phenol content and antioxidant capacity increased while anthocyanin content decreased compared with untreated samples. Total aerobic bacteria (TAB) and molds and yeasts (M&Y) were reduced by 2.07 and 1.13 log10 cycles respectively at 968 W cm-2 for 10 min. CONCLUSIONS: HPU can effectively achieve the effect of pasteurization and maintain the nutrients of strawberry drink. © 2018 Society of Chemical Industry.


Assuntos
Bactérias/isolamento & purificação , Manipulação de Alimentos/métodos , Fragaria/química , Sucos de Frutas e Vegetais/análise , Proteínas de Plantas/análise , Ultrassom/métodos , Antocianinas/análise , Antioxidantes/análise , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/análise , Catecol Oxidase/análise , Cor , Manipulação de Alimentos/instrumentação , Fragaria/enzimologia , Fragaria/microbiologia , Frutas/química , Frutas/crescimento & desenvolvimento , Sucos de Frutas e Vegetais/microbiologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA