Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 68(4): e0167923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38386782

RESUMO

The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , DNA Bacteriano/metabolismo
2.
Ann Transl Med ; 10(4): 176, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35280408

RESUMO

Background: Reactive oxygen species (ROS)-induced oxidative stress (OS) and hyper-proliferation of gastric epithelial cells (GECs) due to Helicobacter pylori (Hp) infection are important mechanisms that lead to gastric carcinoma. Phycocyanin is a marine functional food additive with antioxidant and anti-inflammatory properties. Methods: The flow cytometry was used to detect the effect of 150 µM phycocyanin intervention on the cell cycle of human gastric adenocarcinoma cell line (AGS) infected with Hp. The transcriptomics of AGS cells intervened by 150 µM phycocyanin for 24 h and infected by Hp were detected. Differential gene expression analysis was performed using a cutoff at the normalized gene expression (log2) of 2 and a P-value of <0.05. Comparisons of the transcriptomes were made between the following groups: (I) AGS cells not infected with Hp and not using phycocyanin action and AGS cells infected with Hp only; (II) AGS cells not infected with Hp and not using phycocyanin action and AGS cells infected with phycocyanin action only; and (III) AGS cells infected with Hp only and phycocyanin treated and infected with Hp cells. c-myc and CyclinD1 was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting. Phosphorylation and non-phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 Mitogen-activated protein kinase (p38MAPK) were detected by immunoblotting. Intracellular ROS was detected by immunofluorescence. Results: Phycocyanin alleviates the Hp infection-induced increased cell viability and expression of cell cycle regulatory proteins c-myc and CyclinD1. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the differentially expressed genes in phycocyanin-treated Hp-infected AGS cells were most significantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway. Phycocyanin could inhibit the Hp infection-induced phosphorylation of JNK, ERK, and p38MAPK and reduce the level of cellular ROS. Conclusions: This study suggests that phycocyanin can regulate the ROS/MAPK signaling pathway and reduce c-myc and CyclinD1 expression to inhibit the hyper-proliferation of AGS cells. Phycocyanin may serve as an inhibitor of malignant progression of Hp infection-induced gastric disease.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 163: 96-101, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27043872

RESUMO

Fifty-seven samples of model compounds, 4,4'-disubstituted benzylidene anilines, p-X-ArCH=NAr-p-Y were synthesized. Their infrared absorption spectra were recorded, and the stretching vibration frequencies νC=N of the C=N bridging bond were determined. New stretching vibration mode was proposed by means of the analysis of the factors affecting νC=N, that is there are mainly three modes in the stretching vibration of C=N bond: (I) polar double bond form C=N, (II) single bond-ion form C(+)-N(-) and (III) single bond-diradical form C-N. The contributions of the forms (I) and (II) to the change of νC=N can be quantified by using Hammett substituent constant (including substituent cross-interaction effects between X and Y groups), whereas the contribution of the form (III) can be quantified by employing the excited-state substituent constant. The most contribution of these three forms is the form (III), the next is the form (II), whose contribution difference was discussed with the viewpoint of energy requirements in vibration with the form (III) and form (II).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA