Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Skelet Muscle ; 7(1): 25, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29121992

RESUMO

BACKGROUND: The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-ß (TGF-ß) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. METHODS: A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-ß ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. RESULTS: Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. CONCLUSIONS: We demonstrated that the potent anti-myostatin antibody mRK35 and its clinical analog, domagrozumab, were able to induce muscle anabolic activity in both rodents, including the mdx mouse model of DMD, and non-human primates. A Phase 2, potentially registrational, clinical study with domagrozumab in DMD patients is currently underway.


Assuntos
Anticorpos/administração & dosagem , Contração Muscular , Força Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Miostatina/imunologia , Animais , Células CHO , Cricetulus , Modelos Animais de Doenças , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/fisiopatologia , Miostatina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 114(8): E1509-E1518, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193854

RESUMO

Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by progressive motor neuron loss and caused by mutations in SMN1 (Survival Motor Neuron 1). The disease severity inversely correlates with the copy number of SMN2, a duplicated gene that is nearly identical to SMN1. We have delineated a mechanism of transcriptional regulation in the SMN2 locus. A previously uncharacterized long noncoding RNA (lncRNA), SMN-antisense 1 (SMN-AS1), represses SMN2 expression by recruiting the Polycomb Repressive Complex 2 (PRC2) to its locus. Chemically modified oligonucleotides that disrupt the interaction between SMN-AS1 and PRC2 inhibit the recruitment of PRC2 and increase SMN2 expression in primary neuronal cultures. Our approach comprises a gene-up-regulation technology that leverages interactions between lncRNA and PRC2. Our data provide proof-of-concept that this technology can be used to treat disease caused by epigenetic silencing of specific loci.


Assuntos
Atrofia Muscular Espinal/terapia , Oligonucleotídeos/genética , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Éxons/genética , Fibroblastos , Dosagem de Genes , Terapia Genética/métodos , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Mutação Puntual , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Ativação Transcricional/genética , Regulação para Cima
3.
MAbs ; 8(7): 1302-1318, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27625211

RESUMO

Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.


Assuntos
Anticorpos Monoclonais/química , Regiões Determinantes de Complementaridade/química , Miostatina/imunologia , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais/imunologia , Regiões Determinantes de Complementaridade/imunologia , Humanos , Camundongos , Modelos Moleculares
4.
Curr Pharm Des ; 21(10): 1327-36, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25269560

RESUMO

The targeting of drugs to skeletal muscle is an emerging area of research. Driven by the need for new therapies to treat a range of muscle-associated diseases, these strategies aim to provide improved drug exposure at the site of action in skeletal muscle with reduced concentration in other tissues where unwanted side effects could occur. By interacting with muscle-specific cell surface recognition elements, both tissue localization and selective uptake into skeletal muscle cells can be achieved. The design of molecules that are substrates for muscle uptake transporters can provide concentration in m uscle tissue. For example, drug conjugates with carnitine can provide improved muscle uptake via OCTN2 transport. Binding to muscle surface recognition elements followed by endocytosis can allow even large molecules such as antibodies to enter muscle cells. Monoclonal antibody 3E10 demonstrated selective uptake into skeletal muscle in vivo. Hybrid adeno-associated viral vectors have recently shown promise for high skeletal muscle selectivity in gene transfer applications. Delivery technology methods, including electroporation of DNA plasmids, have also been investigated for selective muscle uptake. This review discusses challenges and opportunities for skeletal muscle targeting, highlighting specific examples and areas in need of additional research.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Transporte Biológico/fisiologia , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Eletroporação/métodos , Eletroporação/tendências , Humanos
5.
Exp Gerontol ; 48(9): 898-904, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23832079

RESUMO

Loss of muscle and bone mass with age are significant contributors to falls and fractures among the elderly. Myostatin deficiency is associated with increased muscle mass in mice, dogs, cows, sheep and humans, and mice lacking myostatin have been observed to show increased bone density in the limb, spine, and jaw. Transgenic overexpression of myostatin propeptide, which binds to and inhibits the active myostatin ligand, also increases muscle mass and bone density in mice. We therefore sought to test the hypothesis that in vivo inhibition of myostatin using an injectable myostatin propeptide (GDF8 propeptide-Fc) would increase both muscle mass and bone density in aged (24 mo) mice. Male mice were injected weekly (20 mg/kg body weight) with recombinant myostatin propeptide-Fc (PRO) or vehicle (VEH; saline) for four weeks. There was no difference in body weight between the two groups at the end of the treatment period, but PRO treatment significantly increased mass of the tibialis anterior muscle (+ 7%) and increased muscle fiber diameter of the extensor digitorum longus (+ 16%) and soleus (+ 6%) muscles compared to VEH treatment. Bone volume relative to total volume (BV/TV) of the femur calculated by microCT did not differ significantly between PRO- and VEH-treated mice, and ultimate force (Fu), stiffness (S), toughness (U) measured from three-point bending tests also did not differ significantly between groups. Histomorphometric assays also revealed no differences in bone formation or resorption in response to PRO treatment. These data suggest that while developmental perturbation of myostatin signaling through either gene knockout or transgenic inhibition may alter both muscle and bone mass in mice, pharmacological inhibition of myostatin in aged mice has a more pronounced effect on skeletal muscle than on bone.


Assuntos
Densidade Óssea/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Miostatina/uso terapêutico , Osteoporose/tratamento farmacológico , Sarcopenia/tratamento farmacológico , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Densidade Óssea/fisiologia , Avaliação Pré-Clínica de Medicamentos/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Miostatina/antagonistas & inibidores , Miostatina/deficiência , Miostatina/farmacologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Osteoporose/patologia , Osteoporose/fisiopatologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Sarcopenia/patologia , Sarcopenia/fisiopatologia , Estresse Mecânico , Tíbia/efeitos dos fármacos , Tíbia/fisiopatologia , Microtomografia por Raio-X/métodos
6.
Physiol Genomics ; 43(19): 1075-86, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21791639

RESUMO

Skeletal muscle atrophy can be a consequence of many diseases, environmental insults, inactivity, age, and injury. Atrophy is characterized by active degradation, removal of contractile proteins, and a reduction in muscle fiber size. Animal models have been extensively used to identify pathways that lead to atrophic conditions. We used genome-wide expression profiling analyses and quantitative PCR to identify the molecular changes that occur in two clinically relevant mouse models of muscle atrophy: hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7, and 14 days after casting or injury. The total amount of muscle loss, as measured by wet weight and muscle fiber size, was equivalent between models on day 14, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tenotomy resulted in the regulation of significantly more mRNA transcripts then did casting. Analysis of the regulated genes and pathways suggest that the mechanisms of atrophy are distinct between these models. The degradation following casting was ubiquitin-proteasome mediated, while degradation following tenotomy was lysosomal and matrix-metalloproteinase mediated, suggesting a possible role for autophagy. These data suggest that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat atrophy resulting from different conditions.


Assuntos
Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Tendão do Calcâneo/lesões , Tendão do Calcâneo/metabolismo , Animais , Perfilação da Expressão Gênica , Membro Posterior/lesões , Membro Posterior/metabolismo , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/lesões , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tenotomia
7.
Genes Dev ; 20(21): 2937-42, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17050674

RESUMO

The perichondrium, a structure made of undifferentiated mesenchymal cells surrounding growth plate cartilage, regulates chondrocyte maturation through poorly understood mechanisms. Analyses of loss- and gain-of-function models show that Twist-1, whose expression in cartilage is restricted to perichondrium, favors chondrocyte maturation in a Runx2-dependent manner. Runx2, in turn, enhances perichondrial expression of Fgf18, a regulator of chondrocyte maturation. Accordingly, compound heterozygous embryos for Runx2 and Fgf18 deletion display the same chondrocyte maturation phenotype as Fgf18-null embryos. This study identifies a transcriptional basis for the inhibition of chondrocyte maturation by perichondrium and reveals that Runx2 fulfills antagonistic functions during chondrogenesis.


Assuntos
Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Condrócitos/citologia , Condrócitos/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Deleção de Genes , Lâmina de Crescimento/embriologia , Lâmina de Crescimento/metabolismo , Mesoderma/citologia , Camundongos , Camundongos Mutantes , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
8.
Endocrinology ; 147(3): 1175-86, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16293667

RESUMO

IGF binding protein-1 (IGFBP-1) inhibits the mitogenic actions of the IGFs. Circulating IGFBP-1 is elevated in newborns and experimental animals with fetal growth restriction (FGR). To establish a causal relationship between high circulating IGFBP-1 and FGR, we have generated transgenic mice using the mouse alpha-fetoprotein gene promoter to target overexpression of human IGFBP-1 (hIGFBP-1) in the fetal liver. These transgenic mice (AFP-BP1) expressed hIGFBP-1 mainly in the fetal hepatocytes, starting at embryonic d 14.5 (E14.5), with lower levels in the gut. The expression peaked at 1 wk postnatally (plasma concentration, 474 +/- 34 ng/ml). At birth, AFP-BP1 pups were 18% smaller [weighed 1.34 +/- 0.02 g compared with 1.62 +/- 0.04 g for wild type (WT); P < 0.05], and they did not demonstrate any postnatal catch-up growth. The placentas of the AFP-BP1 mice were larger than WT from E16.5 onwards (150 +/- 12 for AFP-BP1 vs. 100 +/- 5 mg for WT at E16.5; P < 0.05). Thus, this model of FGR is associated with a larger placenta, but without postnatal catch-up growth. Overall, these data clearly demonstrate that high concentrations of circulating IGFBP-1 are sufficient to cause FGR.


Assuntos
Retardo do Crescimento Fetal/genética , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Animais , Northern Blotting , Southern Blotting , Western Blotting , Peso Corporal , DNA/metabolismo , Primers do DNA/química , DNA Complementar/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Hepatócitos/metabolismo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Fator de Crescimento Insulin-Like I/metabolismo , Ligantes , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Genéticos , Modelos Estatísticos , Fosforilação , Placenta/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Distribuição Tecidual , Transgenes , alfa-Fetoproteínas/genética
9.
Dev Cell ; 8(5): 751-64, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15866165

RESUMO

Inactivation of beta-catenin in mesenchymal progenitors prevents osteoblast differentiation; inactivation of Lrp5, a gene encoding a likely Wnt coreceptor, results in low bone mass (osteopenia) by decreasing bone formation. These observations indicate that Wnt signaling controls osteoblast differentiation and suggest that it may regulate bone formation in differentiated osteoblasts. Here, we study later events and find that stabilization of beta-catenin in differentiated osteoblasts results in high bone mass, while its deletion from differentiated osteoblasts leads to osteopenia. Surprisingly, histological analysis showed that these mutations primarily affect bone resorption rather than bone formation. Cellular and molecular studies showed that beta-catenin together with TCF proteins regulates osteoblast expression of Osteoprotegerin, a major inhibitor of osteoclast differentiation. These findings demonstrate that beta-catenin, and presumably Wnt signaling, promote the ability of differentiated osteoblasts to inhibit osteoclast differentiation; thus, they broaden our knowledge of the functions Wnt proteins have at various stages of skeletogenesis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteoclastos/citologia , Osteoclastos/metabolismo , Animais , Desenvolvimento Ósseo , Diferenciação Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Relacionadas a Receptor de LDL , Óperon Lac , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Camundongos Knockout , Camundongos Mutantes , Camundongos Transgênicos , Osteogênese , Osteopetrose/etiologia , Osteoprotegerina , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Proteínas Wnt , beta Catenina
10.
Cell ; 117(3): 387-98, 2004 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-15109498

RESUMO

Coffin-Lowry Syndrome (CLS) is an X-linked mental retardation condition associated with skeletal abnormalities. The gene mutated in CLS, RSK2, encodes a growth factor-regulated kinase. However, the cellular and molecular bases of the skeletal abnormalities associated with CLS remain unknown. Here, we show that RSK2 is required for osteoblast differentiation and function. We identify the transcription factor ATF4 as a critical substrate of RSK2 that is required for the timely onset of osteoblast differentiation, for terminal differentiation of osteoblasts, and for osteoblast-specific gene expression. Additionally, RSK2 and ATF4 posttranscriptionally regulate the synthesis of Type I collagen, the main constituent of the bone matrix. Accordingly, Atf4-deficiency results in delayed bone formation during embryonic development and low bone mass throughout postnatal life. These findings identify ATF4 as a critical regulator of osteoblast differentiation and function, and indicate that lack of ATF4 phosphorylation by RSK2 may contribute to the skeletal phenotype of CLS.


Assuntos
Anormalidades Múltiplas/genética , Regulação Enzimológica da Expressão Gênica , Osteoblastos/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/enzimologia , Fator 4 Ativador da Transcrição , Animais , Diferenciação Celular , Linhagem Celular , Núcleo Celular/química , Colágeno Tipo I/biossíntese , Matriz Extracelular/química , Genes Reguladores , Deficiência Intelectual/genética , Camundongos , Camundongos Mutantes , Morfogênese , Osteocalcina/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Síndrome , Transativadores/deficiência , Transativadores/genética , Fatores de Transcrição/genética , Ativação Transcricional , Cromossomo X
11.
Dev Cell ; 6(3): 423-35, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15030764

RESUMO

Runx2 is necessary and sufficient for osteoblast differentiation, yet its expression precedes the appearance of osteoblasts by 4 days. Here we show that Twist proteins transiently inhibit Runx2 function during skeletogenesis. Twist-1 and -2 are expressed in Runx2-expressing cells throughout the skeleton early during development, and osteoblast-specific gene expression occurs only after their expression decreases. Double heterozygotes for Twist-1 and Runx2 deletion have none of the skull abnormalities observed in Runx2(+/-) mice, a Twist-2 null background rescues the clavicle phenotype of Runx2(+/-) mice, and Twist-1 or -2 deficiency leads to premature osteoblast differentiation. Furthermore, Twist-1 overexpression inhibits osteoblast differentiation without affecting Runx2 expression. Twist proteins' antiosteogenic function is mediated by a novel domain, the Twist box, which interacts with the Runx2 DNA binding domain to inhibit its function. In vivo mutagenesis confirms the antiosteogenic function of the Twist box. Thus, relief of inhibition by Twist proteins is a mandatory event precluding osteoblast differentiation.


Assuntos
Diferenciação Celular/fisiologia , Fatores de Regulação Miogênica/fisiologia , Proteínas Nucleares/fisiologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Proteínas Repressoras/fisiologia , Fatores de Transcrição/fisiologia , Envelhecimento/metabolismo , Animais , Animais Recém-Nascidos , Northern Blotting/métodos , Western Blotting/métodos , Células Cultivadas , Chlorocebus aethiops , Subunidade alfa 1 de Fator de Ligação ao Core , Análise Mutacional de DNA/métodos , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Regulação da Expressão Gênica/fisiologia , Heterozigoto , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Regulação Miogênica/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Testes de Precipitina/métodos , Prolina/genética , Estrutura Terciária de Proteína/fisiologia , RNA/análise , Ratos , Proteínas Repressoras/genética , Serina/genética , Esqueleto , Coloração e Rotulagem , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Transfecção/métodos , Proteína 1 Relacionada a Twist
12.
Endocrinology ; 143(3): 868-76, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11861508

RESUMO

In mammals stanniocalcin (STC) is widely expressed, and in the kidney and gut it regulates serum calcium levels by promoting phosphate reabsorption. To shed further light on its functional significance in mammals we have created several lines of mice that express a human STC (hSTC) transgene. Three lines expressed the hSTC transgene, but only two lines exhibited high expression and contained circulating hSTC, and in these animals there was a reduction in postnatal growth (30-50%) that persisted after weaning. Moreover, even wild-type pups exhibited a growth retardation phenotype when nursed by a transgenic foster mother, and this implies that hSTC overexpression deleteriously affects maternal behavior and/or lactation. The reproductive potential of female transgenic mice was also compromised, as evidenced by significantly smaller litter sizes, but transgenic male fertility was unchanged even though the transgene was most highly expressed in testes. Interestingly, transgene-derived serum hSTC increased significantly after puberty and was severalfold higher in females than in males, suggesting a gender-specific mechanism for maintaining elevated circulating levels of STC. Blood analysis revealed that both transgenic lines had elevated phosphate and decreased alkaline phosphatase levels, indicative of altered kidney and bone metabolism. These studies provide the first evidence that STC is involved in growth and reproduction and reaffirm its role in mineral homeostasis.


Assuntos
Glicoproteínas/genética , Glicoproteínas/fisiologia , Crescimento/genética , Hormônios/genética , Hormônios/fisiologia , Reprodução/genética , Fosfatase Alcalina/sangue , Animais , Northern Blotting , Cálcio/sangue , Glicoproteínas/biossíntese , Hormônios/biossíntese , Humanos , Hibridização In Situ , Metalotioneína/genética , Camundongos , Camundongos Transgênicos , Fenótipo , Fosfatos/sangue , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA