Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Genomics ; 25(1): 562, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840036

RESUMO

BACKGROUND: Floral transition in cereals is a critical phenomenon influenced by exogenous and endogenous signals, determining crop yield and reproduction. Flowering Locus T-like (FT-like) genes encode a mobile florigen, the main signaling molecule for flowering. RESULTS: In this study, we characterized two FT-like genes, FTL9 and FTL10, to study their functional diversity in flowering control in rice. We compared independent mutant lines of ftl10 with WT and observed negligible differences in the flowering phenotype, or agronomic traits implying potentially redundant roles of FTL10 loss-of-function in flowering control in rice. Nevertheless, we found that overexpression of FTL10, but not FTL9, substantially accelerated flowering, indicating the flowering-promoting role of FTL10 and the divergent functions between FTL9 and FTL10 in flowering. Besides flowering, additive agronomic roles were observed for FTL10-OE regulating the number of effective panicles per plant, the number of primary branches per panicle, and spikelets per panicle without regulating seed size. Mechanistically, our Y2H and BiFC analyses demonstrate that FTL10, in contrast to FTL9, can interact with FD1 and GF14c, forming a flowering activation complex and thereby regulating flowering. CONCLUSION: Altogether, our results elucidate the regulatory roles of FTL9 and FTL10 in flowering control, unveiling the molecular basis of functional divergence between FTL10 and FTL9, which provides mechanistic insights into shaping the dynamics of flowering time regulation in rice.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Flores/genética , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo
2.
Plants (Basel) ; 13(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38256728

RESUMO

Salt stress is one of the most important factors limiting rice growth and yield increase. Salt tolerance of rice at the bud burst (STB) stage determines whether germinated seeds can grow normally under salt stress, which is very important for direct seeding. However, reports on quantitative trait loci (QTLs) and candidate genes for STB in rice are very limited. In this study, a natural population of 130 indica and 81 japonica rice accessions was used to identify STB-related QTLs and candidate genes using a genome-wide association study (GWAS). Nine QTLs, including five for relative shoot length (RSL), two for relative root length (RRL), and two for relative root number (RRN), were identified. Five of these STB-related QTLs are located at the same site as the characterized salt tolerance genes, such as OsMDH1, OsSRFP1, and OsCDPK7. However, an important QTL related to RSL, qRSL1-2, has not been previously identified and was detected on chromosome 1. The candidate region for qRSL1-2 was identified by linkage disequilibrium analysis, 18 genes were found to have altered expression levels under salt stress through the RNA-seq database, and 10 of them were found to be highly expressed in the shoot. It was also found that, eight candidate genes (LOC_Os01g62980, LOC_Os01g63190, LOC_Os01g63230, LOC_Os01g63280, LOC_Os01g63400, LOC_Os01g63460, and LOC_Os01g63580) for qRSL1-2 carry different haplotypes between indica and japonica rice, which exactly corresponds to the significant difference in RSL values between indica and japonica rice in this study. Most of the accessions with elite haplotypes were indica rice, which had higher RSL values. These genes with indica-japonica specific haplotypes were identified as candidate genes. Rice accessions with elite haplotypes could be used as important resources for direct seeding. This study also provides new insights into the genetic mechanism of STB.

3.
Environ Sci Pollut Res Int ; 30(40): 91956-91970, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37480540

RESUMO

During the irrigation period, the interactions between the linked lake-groundwater systems are complicated and change. This is because natural and human activities are happening at the same time, which makes it harder to identify the interactions. This study uses data on water level, hydrochemistry, and hydrogen-oxygen stable isotopes to analyze the hydrodynamics, electrical conductivity (EC), isotopic characteristics, and spatial distribution of lake water and groundwater to reveal lake-groundwater interactions. The results indicate that the hydrochemical type of Chagan Lake and groundwater is dominated by the HCO3-Na type. The key hydrochemical indicator EC obtained by principal component analysis (PCA) can be used to reveal the lake-groundwater interaction, and the interaction should be identified by location according to the significant correlation between hierarchical clustering results and regional distribution. The lake body's geographic coefficient of variation for EC and δ18O is small, and irrigation return flow is one factor in the region's surface water's significant spatial variation for EC and δ18O. The three study methods indicate that the groundwater supplies the lake in the vicinity of the Huoling River-Hongzi Pool, while in other sections, the lake water leaks and replenishes the groundwater, exhibiting geographic inconsistency. The isotope method was employed as a support tool to determine that groundwater might recharge the lake at Xinmiao Pool. According to the calculations of the Mix SIAR model, the groundwater recharge contribution rate in the Xinmiao Pool section is approximately 51%, while in the remaining sections, the contribution rate of lake water to groundwater ranges from approximately 25% to 52%. Therefore, the identification of the interaction is crucial for the linked irrigated lake-groundwater system where water sources are scarce and threatened by agricultural pollution.


Assuntos
Água Subterrânea , Lagos , Humanos , Hidrodinâmica , Agricultura , Isótopos de Oxigênio , Água
4.
Environ Sci Pollut Res Int ; 30(40): 91929-91944, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37481495

RESUMO

As one of the most representative forms of groundwater, mineral water provides a critical understanding of regional hydrogeochemical features and rock weathering processes. However, current studies have mostly focused on the quality of mineral water and have rarely addressed the weathering process during its formation. Therefore, a multi-tracer approach combines chemical parameters, major ions, selected trace elements, and 87Sr/86Sr ratios for mineral water samples in Changbai Mountain during 2020-2021. First, we determined the hydrogeochemical characteristics of different types of mineral water. Secondly, the water-rock interaction processes governing the water mineralization were described to fix the hydrogeochemical background. Thirdly, the chemical weathering rate was calculated. The total dissolved load generated by rock weathering was around 6.76 tons/km2/year in the mineral water catchment area; 44.6% and 36.9% of the dissolved load were derived from silicate and carbonate weathering, respectively. The trace carbonates also played an important role in the overall rock weathering. Finally, after fully considering various influencing factors, we concluded that lithological characteristics and the soil environment rich in organic acids were the most important factors affecting rock weathering in the Changbai Mountain area. Overall, this study highlights the mineral water's role in the fluxes of CO2 in local area and reveals possible influence of the unique ecological and geological environment on rock weathering in Changbai Mountain. It can provide a reference for the subsequent assessment of environmental stability for basalt areas and the possibility of sustainable water resources development.


Assuntos
Dióxido de Carbono , Águas Minerais , Área Programática de Saúde , China , Isótopos de Estrôncio
5.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447057

RESUMO

The photosynthetic capacity of flag leaf plays a key role in grain yield in rice. Nevertheless, there are few studies on the heterosis of the rice flag leaf. Therefore, this study focuses on investigating the genetic basis of heterosis for flag leaf in the indica super hybrid rice combination WFYT025 in China using a high-throughput next-generation RNA-seq strategy. We analyzed the gene expression of flag leaf in different environments and different time periods between WFYT025 and its female parent. After obtaining the gene expression profile of the flag leaf, we further investigated the gene regulatory network. Weighted gene expression network analysis (WGCNA) was used to identify the co-expressed gene sets, and a total of 5000 highly expressed genes were divided into 24 co-expression groups. In CHT025, we found 13 WRKY family transcription factors in SDGhps under the environment of early rice and 16 WRKY family genes in SDGhps of under the environment of middle rice. We found nine identical transcription factors in the two stages. Except for five reported TFs, the other four TFs might play an important role in heterosis for grain number and photosynthesis. Transcription factors such as WRKY3, WRKY68, and WRKY77 were found in both environments. To eliminate the influence of the environment, we examined the metabolic pathway with the same SDGhp (SSDGhp) in two environments. There were 312 SSDGhps in total. These SSDGhps mainly focused on the phosphorus metallic process, phosphorylation, plasma membrane, etc. These results provide resources for studying heterosis during super hybrid rice flag leaf development.

6.
Front Plant Sci ; 14: 1113618, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37008461

RESUMO

Anthocyanin is one of the flavonoids, which has strong antioxidant properties. Functional rice rich in anthocyanins can not only improve immunity, but also anti-radiation, beauty, anti-aging effect, very popular in the market. In this study, we used Zibaoxiangnuo 1 (ZBXN 1), a functional rice variety which is rich in total flavonoids and anthocyanins, as the experimental material to construct Recombination Inbred Lines (RILs) with Minghui63 (MH63), a variety without anthocyanins. The contents of anthocyanins and total flavonoids of RILs and two parents were determined for three consecutive generations. The average anthocyanin content of parent ZBXN 1 was 319.31 mg/kg, and the anthocyanin inheritance of RIL population was relatively stable, with 10 samples higher than ZBXN 1. In addition, there was no significant difference in the total flavonoids content between the two parents, the total flavonoids content of Z25 in RIL population was 0.33%. Based on these studies, we believe that ZBXN 1 has abundant and stable anthocyanins, which can be used as an intermediate breeding material for breeding high-quality varieties with high anthocyanins, and lay a foundation for breeding more anthocyanin-rich rice varieties.

7.
J Contam Hydrol ; 255: 104151, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36791615

RESUMO

Equifinality and premature convergence can result in considerable errors when simultaneously characterizing groundwater contamination sources and estimating contaminant transport parameters. To resolve this problem, we design a sensitivity-dependent progressive optimization system embedding ensemble-learning technique. To avoid repetitive CPU-demanding model evaluations in Sobol' global sensitivity analysis and swarm intelligence optimization inverse modeling, Kriging, support vector regression (SVR), kernel extreme learning machine (KELM), and deep convolutional neural network (DCNN) are compared and ensembled to build an accurate surrogate of the numerical model. In addition, the sensitivities of different source characteristics and contaminant transport parameters are set as important indicators to adjust the displacement vectors of the swarm in each iteration during the optimization process to achieve a balanced identification of sensitivity-varied elements. Moreover, a homotopy-based progressive searching mechanism approach to the global optimum in large areas is developed, with the aim of preventing premature convergence for multimodal search problems. The results indicate that the ensemble learning model efficiently captures the complex input-output relationship of the numerical model with an increased determination coefficient (R2 = 0.9988), while the mean relative error is limited to 0.9314%. Although the contribution of source characteristics and contaminant transport parameters to the spatial-temporal distribution of contaminants vary dramatically, the combined application of sensitivity analysis, homotopy theory, and swarm intelligence optimization provides a more stable and accurate estimation of all the elements. The mean relative error of the identification results significantly reduced from 7.2184% to 3.2718%, whereas the maximum relative error is limited to 9.9501%.


Assuntos
Água Subterrânea , Redes Neurais de Computação , Análise Espacial , Algoritmos
8.
Environ Geochem Health ; 45(6): 3743-3758, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36508045

RESUMO

The adsorption of soil can reduce the leaching of NH4+-N from the external environment into groundwater. The adsorption of NH4+-N is affected by many factors. It is critical to use statistical model to quantitatively describe the effects of interaction between two or more factors on the system response. In this study, HJ-Biplot was used to analyze the correlation characteristics of soil water, salt, and nitrogen, and the response surface methodology and artificial neural network were used to statistically visualize the interaction between factors, including concentration, total dissolved solids (TDS), temperature, and pH. The results showed that the study soil was a typical saline soil, with maximum soil NH4+-N content of 85.45 mg/kg. For the adsorption experiments of NH4+-N on saline soils, the effects of factors on the adsorption capacity were assessed using the RSM model. The RSM model was coupled with an ANN to predict the adsorption of NH4+-N by saline soils. The NH4+-N concentration and water pH were both significant at a linear level (p < 0.0001). The interaction between NH4+-N concentration and pH was also more significant (p < 0.01). Under optimal conditions (concentration: 800 mg/L; temperature: 24 °C; TDS: 637 mg/L; pH: 7.83), the NH4+-N adsorption capacity was 1650.2 ug/g, which was in general agreement with the calculated values from the Box-Behnken and RSM model. In addition, a statistical error criterion for the model showed that the RSM-ANN model had greater predictive ability than RSM model.


Assuntos
Amônia , Água Subterrânea , Adsorção , Solo/química , Redes Neurais de Computação , Nitrogênio , Água
9.
Environ Sci Pollut Res Int ; 30(12): 34255-34269, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36508101

RESUMO

Due to the influence of complex regional climate, water quality perturbation factors of lakes in cold regions are complicated, and the uncertainty of each factor needs further study. This study coupled two algorithms (clustering and EM) to establish a water quality uncertainty model of Chagan Lake, a typical cold region lake in China. A BN model containing nine influencing factors (including water temperature (WT), total phosphorus (TP), total nitrogen (TN), etc.) was established and optimized, and sensitivity analysis was also performed. The results indicate that the water quality status of the lake is class III and 27.47% risk of exceeding the standard. The water quality of the lake is more susceptible to disturbance during the freezing period (WT < 1 °C). TP is the most sensitive factor for water quality disturbance in the lake followed by chemical oxygen demand (COD), TN, and fluoride (F). Parameter control result displays, and the multifactor synergistic control scheme could reduce the water quality risk of the lake by 36.47%. This study demonstrates that our proposed method can be used to predict both sudden water quality events and the overall trend of water quality fluctuation, which is important for rapid water quality evaluation and management decisions.


Assuntos
Poluentes Químicos da Água , Qualidade da Água , Monitoramento Ambiental/métodos , Lagos , China , Temperatura , Fósforo/análise , Nitrogênio/análise , Poluentes Químicos da Água/análise , Eutrofização
10.
BMC Plant Biol ; 22(1): 612, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36572865

RESUMO

BACKGROUND: Phytochromes are important photoreceptors in plants, and play essential roles in photomorphogenesis. The functions of PhyA and PhyB in plants have been fully analyzed, while those of PhyC in plant are not well understood. RESULTS: A rice mutant, late heading date 3 (lhd3), was characterized, and the gene LHD3 was identified with a map-based cloning strategy. LHD3 encodes phytochrome C in rice. Animo acid substitution in OsphyC disrupted its interaction with OsphyB or itself, restraining functional forms of homodimer or heterodimer formation. Compared with wild-type plants, the lhd3 mutant exhibited delayed flowering under both LD (long-day) and SD (short-day) conditions, and delayed flowering time was positively associated with the day length via the Ehd1 pathway. In addition, lhd3 showed a pale-green-leaf phenotype and a slower chlorophyll synthesis rate during the greening process. The transcription patterns of many key genes involved in photoperiod-mediated flowering and chlorophyll synthesis were altered in lhd3. CONCLUSION: The dimerization of OsPhyC is important for its functions in the regulation of chlorophyll synthesis and heading. Our findings will facilitate efforts to further elucidate the function and mechanism of OsphyC and during light signal transduction in rice.


Assuntos
Oryza , Fitocromo , Oryza/metabolismo , Flores/metabolismo , Mutação , Fitocromo/genética , Fotoperíodo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Front Plant Sci ; 13: 1030247, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388546

RESUMO

In plants, MAP65 preferentially cross-links the anti-parallel microtubules (MTs) and plays an important role for cytokinesis. However, the functions of MAP65 isoforms in rice (Oryza sativa. L) are largely unknown. Here, we identified two MAP65-3 homologs in rice, OsMAP65-3.1 and OsMAP65-3.2. We found that both OsMAP65-3.1 and OsMAP65-3.2 were similar in dimerization and location to AtMAP65-3, and the expression of either rice genes driven by the AtMAP65-3 promoter suppressed the cytokinesis failure and growth defect of atmap65-3. However, OsMAP65-3.1 with native promoter also recovered the atmap65-3, but OsMAP65-3.2 with its own promoter had no effects. OsMAP65-3.1 but not OsMAP65-3.2 was actively expressed in tissues enriched with dividing cells. R1R2R3-Myb (MYB3R) transcription factors directly bound to the OsMAP65-3.1 promoter but not that of OsMAP65-3.2. Furthermore, osmap65-3.2 had no obvious phenotype, while either osmap65-3.1 or osmap65-3.1(+/-) was lethal. The eminent MTs around the daughter nuclei and cytokinesis defects were frequently observed in OsMAP65-3.1-defective plants. Taken together, our findings suggest that OsMAP65-3.1, rather than OsMAP65-3.2, plays essential roles in rice cytokinesis resulting from their differential expression which were passably directly regulated by OsMYB3Rs.

12.
Environ Pollut ; 314: 120208, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162561

RESUMO

Excessive enrichment of fluoride threatens ecological stability and human health. The high-fluoride groundwater in the Chagan Lake area has existed for a long time. With the land consolidation and irrigation area construction, the distribution and migration process of fluoride have changed. It is urgent to explore the evolution of fluoride under the dual effects of nature and human. Based on 107 groundwater samples collected in different land use periods, hydrogeochemistry and isotope methods were combined to explore the evolution characteristics and hydrogeochemical processes of fluoride in typical high-fluoride background area and elucidate the impact of anthropogenic activities on fluoride migration. The results indicate that large areas of paddy fields are developed from saline-alkali land, and its area has increased by nearly 30%. The proportion of high-fluoride groundwater (>2 mg/L) has increased by nearly 10%, mainly distributed in the new irrigation area. Hydrogeochemical processes such as dissolution of fluorine-containing minerals, precipitation of carbonate minerals and exchange of Na+, Ca2+ on the water-soil interface control the enrichment of fluoride. The groundwater d-excess has no obvious change with the increase of TDS, and human activities are one of the reasons for the increase of fluoride. The concentration of fluoride is diluted due to years of diversion irrigation in old irrigation area, whereas the enrichment of δ2H, δ18O and Cl- in new irrigation area indicates that the vertical infiltration of washing alkali and irrigation water brought fluoride and other salts to groundwater. Fertilizer and wastewater discharges also contribute to the accumulation of fluoride, manifesting as co-increasing nitrate and chloride salts. The results of this study provide a new insight into fluoride migration under anthropogenic disturbance in high-fluoride background areas.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Fluoretos/análise , Nitratos/análise , Fertilizantes/análise , Sais , Águas Residuárias , Flúor , Cloretos , Efeitos Antropogênicos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Isótopos , Minerais , Carbonatos , Água , Solo , Álcalis
13.
Front Plant Sci ; 13: 934515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909718

RESUMO

Salt stress is one of the factors that limits rice production, and an important task for researchers is to cultivate rice with strong salt tolerance. In this study, 211 rice accessions were used to determine salt tolerance germinability (STG) indices and conduct a genome-wide association study (GWAS) using 36,727 SNPs. The relative germination energy (RGE), relative germination index (RGI), relative vigor index (RVI), relative mean germination time (RMGT), relative shoot length (RSL), and relative root length (RRL) were used to determine the STG indices in rice. A total of 43 QTLs, including 15 for the RGE, 6 for the RGI, 7 for the RVI, 3 for the RMGT, 1 for the RSL, and 11 for the RRL, were identified on nine chromosome regions under 60 and 100 mM NaCl conditions. For these STG-related QTLs, 18 QTLs were co-localized with previous studies, and some characterized salt-tolerance genes, such as OsCOIN, OsHsp17.0, and OsDREB2A, are located in these QTL candidates. Among the 25 novel QTLs, qRGE60-1-2 co-localized with qRGI60-1-1 on chromosome 1, and qRGE60-3-1 and qRVI60-3-1 co-localized on chromosome 3. According to the RNA-seq database, 16 genes, including nine for qRGE60-1-2 (qRGI60-1-1) and seven for qRGE60-3-1 (qRVI60-3-1), were found to show significant differences in their expression levels between the control and salt treatments. Furthermore, the expression patterns of these differentially expressed genes were analyzed, and nine genes (five for qRGE60-1-2 and four for qRGE60-3-1) were highly expressed in embryos at the germination stage. Haplotype analysis of these nine genes showed that the rice varieties with elite haplotypes in the LOC_Os03g13560, LOC_Os03g13840, and LOC_Os03g14180 genes had high STG. GWAS validated the known genes underlying salt tolerance and identified novel loci that could enrich the current gene pool related to salt tolerance. The resources with high STG and significant loci identified in this study are potentially useful in breeding for salt tolerance.

14.
Environ Sci Pollut Res Int ; 29(49): 73910-73925, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35624376

RESUMO

Antu County in the Changbai Mountains is an important source of mineral water, but there is a lack of research on the source of groundwater characteristic components, affecting the protection of water resources. This study obtained hydrochemical and isotopic data (28 groups in total, April and September in 2019) by summarizing research and sampling data in order to identify the formation process of characteristics. The formation mechanism of the characteristic components was revealed using geostatistical, isotopic, and hydrogeochemical inversion simulations. The results show that the metasilicic acid is a common component of groundwater water chemistry in the study area. The water body primarily receives stable recharge from low-mineralized precipitation with ages ranging from 27.7 to 38.4 years and recharge elevations ranging from 1160 to 2393 m, providing ample time for water-rock interaction. The dissolution of olivine, pyroxene, albite, and other siliceous minerals is the source of characteristic components, and deep faults and deep basalt heat flow are the key conditions for the formation of metasilicic acid. When low-mineralized precipitation recharges the underground aquifer, it dissolves the silica-aluminate and silicon-containing minerals in the surrounding rocks through the water-rock action under the effect of CO2, causing a large amount of metasilic acid to dissolve into the groundwater and forming metasilic acid-type mineral water.


Assuntos
Água Subterrânea , Águas Minerais , Poluentes Químicos da Água , Dióxido de Carbono , Monitoramento Ambiental/métodos , Água Subterrânea/química , Silício , Dióxido de Silício , Poluentes Químicos da Água/análise
15.
J Environ Manage ; 306: 114467, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35026712

RESUMO

The adsorption of benzene on soils is specifically associated with its migration and transformation. Although previous studies have proved that the adsorption of benzene is affected by various factors, studies simultaneously considering the effects of multiple factors are rare. This study aimed to identify the qualitative and quantitative relationships between multiple influential factors and the adsorption capacity of benzene (BC). Batch adsorption experiments considering different influential factors, including initial concentration (IC), pH, temperature (T), ion strength (IS) and organic matter content (OMC), were conducted in three kinds of soils collected in a chemical industry park. The correlation analysis between different influential factors and BC was carried out based on the experimental data. The artificial neural network (ANN) was applied to predict BC. The results showed that BC increased with the increase of T. As the pH increased, BCs on silty loam and loam increased, while that on sandy loam decreased. Besides, BCs on silty loam and loam raised with increasing OMC, while that on sandy loam remained unchanged. BCs on all three kinds of soils attained their peaks when IS was small and then become stable with an increase in IS. The sequence of correlation between BC and influential factors is listed as IC > OMC > T > IS > pH for silty loam, OMC > IC > T > IS > pH for loam and IC > T > IS > pH > OMC for sandy loam. ANN analysis showed satisfactory accuracy in predicting BC under different influential factors. These results help us understand the important factors affecting benzene adsorption and provide a tool to get the adsorption information easily in complex site conditions.


Assuntos
Poluentes do Solo , Solo , Adsorção , Benzeno , Redes Neurais de Computação , Poluentes do Solo/análise
16.
Sci Total Environ ; 810: 151955, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843788

RESUMO

The widespread use of veterinary antibiotics has led to the significant problem of contamination of livestock wastewater with significant amount of antibiotics. Electrocoagulation (EC) has become a prominent research topic because of the technique's ability to remove antibiotics from livestock wastewater. However, an urgent solution is needed to reduce the high operating costs associated with the process. Therefore, in this study, we developed a positive single pulse current (PSPC)-EC system to remove tetracycline (TC) from synthetic and actual livestock wastewater. Influential factors were investigated, and the optimal PSPC-EC operating parameters were identified as follows: duty ratio = 60%, pH = 4, electrode spacing = 1 cm, current intensity = 0.2 A, and conductivity = 2 mS cm-1. The mechanism of PSPC-EC was characterised using techniques including scanning electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy. The TC decomposition pathway was proposed based on the generation of its intermediate products. A toxicity estimation software tool (TEST) model was used to evaluate the toxicity of TC and its main degradation products, and most of its intermediates were found to be less toxic than TC. The contribution ratios of floc adsorption and electrochemical oxidation for removing TC were 74.17% and 21.48%, respectively. The highest TC removal rate reached 95% with an operating cost of 0.011 USD/m3. Finally, under the optimum conditions identified, actual livestock wastewater was treated by PSPC-EC. Compared with conventional EC and coagulation treatment techniques that consume electricity and produce pollution, the results indicate that the PSPC-EC technique with changing current operation mode is a more cost-effective and attractive option for removing TC from livestock wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Animais , Antibacterianos , Eletrocoagulação , Eletrodos , Gado , Tetraciclina/toxicidade , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade
17.
Ground Water ; 60(3): 330-343, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34850387

RESUMO

To more accurately predict the migration behavior of pollutants in porous media, we conduct laboratory scale experiments and model simulation. Aniline (AN) is used in one-dimensional soil column experiments designed under various media and hydrodynamic conditions. The advection-dispersion equation (ADE) and the continuous-time random walk (CTRW) were used to simulate the breakthrough curves (BTCs) of the solute transport. The results show that the media and hydrodynamic conditions are two important factors affecting solute transport and are related to the degree of non-Fickian transport. The simulation results show that CTRW can more effectively describe the non-Fickian phenomenon in the solute transport process than ADE. The sensitive parameter in the CTRW simulation process is ß , which can reflect the degree of non-Fickian diffusion in the solute transport. Understanding the relationship of ß with velocity and media particle size is conducive to improving the reactive solute transport model. The results of this study provide a theoretical basis for better prediction of pollutant transport in groundwater.


Assuntos
Água Subterrânea , Simulação por Computador , Modelos Teóricos , Porosidade , Soluções , Movimentos da Água
18.
Environ Sci Pollut Res Int ; 29(14): 20479-20495, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34741265

RESUMO

The groundwater environment changes under the influence of anthropogenic activities. Because of the construction of the Da'an irrigation area, the amount of irrigation and fertilizer there has changed. Achieving the coordinated development of groundwater resources and economic benefits requires a deeper understanding of the impact of the construction of irrigation areas on groundwater chemistry. In this study, the variations in groundwater chemistry characteristics were studied using statistics and hydrogeochemical methods. Further, the groundwater quality was assessed using the support vector machine method. The results show that the primary water chemistry type was the HCO3 - Ca - Mg type, with local Fe3+ and F- pollution. After the construction of irrigation area, the SO42-, HCO3-, K+ + Na+, and Ca2+ contents decreased, but the Cl- and Mg2+ contents increased. The main nitrogen source in phreatic water was anthropogenic activities, and the main pollution component was NH4+. After the construction of the irrigation area, the NH4+ concentration increased significantly, and the ratio of samples exceeding the standard increased by 37.5%. The over-standard regions spread to the northwest, east, and southeast of Da'an City and east and southeast of the irrigation area. The groundwater quality was predominantly grade IV and V, which accounted for an increase of 16.35%, widely distributed in the south, east, and southwest of the irrigation area and urban areas. The construction of the irrigation area reduced the suitability of phreatic water for agricultural irrigation in the southeast but increased in the west and north.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Irrigação Agrícola , Efeitos Antropogênicos , Monitoramento Ambiental/métodos , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água
19.
BMC Plant Biol ; 21(1): 542, 2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34800993

RESUMO

BACKGROUND: Rice is a crop that is very sensitive to low temperature, and its morphological development and production are greatly affected by low temperature. Therefore, understanding the genetic basis of cold tolerance in rice is of great significance for mining favorable genes and cultivating excellent rice varieties. However, there have been limited studies focusing on cold tolerance at the bud burst stage; therefore, considerable attention should be given to the genetic basis of cold tolerance at this stage. RESULTS: In this study, a natural population consisting of 211 rice landraces collected from 15 provinces in China and other countries was used for the first time to evaluate cold tolerance at the bud burst stage. Population structure analysis showed that this population was divided into two groups and was rich in genetic diversity. Our evaluation results confirmed that japonica rice was more tolerant to cold at the bud burst stage than indica rice. A genome-wide association study (GWAS) was performed with the phenotypic data of 211 rice landraces and a 36,727 SNP dataset under a mixed linear model. Twelve QTLs (P < 0.0001) were identified for the seedling survival rate (SR) after treatment at 4 °C, in which there were five QTLs (qSR2-2, qSR3-1, qSR3-2, qSR3-3 and qSR9) that were colocalized with those from previous studies and seven QTLs (qSR2-1, qSR3-4, qSR3-5, qSR3-6, qSR3-7, qSR4 and qSR7) that were reported for the first time. Among these QTLs, qSR9, harboring the most significant SNP, explained the most phenotypic variation. Through bioinformatics analysis, five genes (LOC_Os09g12440, LOC_Os09g12470, LOC_Os09g12520, LOC_Os09g12580 and LOC_Os09g12720) were identified as candidates for qSR9. CONCLUSION: This natural population consisting of 211 rice landraces combined with high-density SNPs will serve as a better choice for identifying rice QTLs/genes in the future, and the detected QTLs associated with cold tolerance at the bud burst stage in rice will be conducive to further mining favorable genes and breeding rice varieties under cold stress.


Assuntos
Temperatura Baixa , Resposta ao Choque Frio/genética , Flores/crescimento & desenvolvimento , Flores/genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Locos de Características Quantitativas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo
20.
Sci Total Environ ; 800: 149484, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34392216

RESUMO

Organic pollutants are common in the environment, very difficult to remove, and pose a serious threat to human health. Probabilistic risk assessment advances conservative single-point estimation and brings a new perspective to risk assessment. From 2009 to 2019, we monitored the distribution of major pollutants in an industrial park in Northeastern China. The result showed the maximum concentration of benzene reached 73,680 µg/L in 2009, benzo[a]pyrene reached 36.80 ng/L in 2016. These concentrations are significantly above the levels set by Chinese regulatory agencies. The single-factor index increases year by year, and pollutants gradually spread from the pollution leakage source to surrounding areas. A new method was used to quantify the human health risk from groundwater organic pollution accurately, based on the triangular fuzzy numbers coupled with the Monte Carlo simulation. The Monte Carlo simulation was used to simulate the triangular fuzzy numbers. This simplified the operation between the triangular fuzzy numbers and their function successfully and obtained the risk as a set of values. The results indicated that non-carcinogenic risk was negligible in all age groups (children, adolescents, and adults). Conversely, when it comes to carcinogenic risks, adults were about 50-270 times the tolerable level of risk due to long exposure years and wide skin contact areas. Oral ingestion played an essential role in total exposure (>90%) compared to dermal contact. Control of exposure duration and intake should be prioritized when making decisions to reduce risk uncertainty. Monte Carlo simulation-triangular fuzzy numbers can effectively reduce the risk of uncertainty and reflect the complex conditions of the groundwater environment for small amounts of data or inaccurate data.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Adolescente , Adulto , Benzeno , Criança , China , Monitoramento Ambiental , Humanos , Medição de Risco , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA