Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 44(12): 6576-6585, 2023 Dec 08.
Artigo em Chinês | MEDLINE | ID: mdl-38098385

RESUMO

Based on the ISAM module in the WRF-CMAQ model, this study analyzed the source contribution(both regional and sectoral) of O3 and its precursors(NO2 and VOCs) in Zibo in June 2021. Days with a maximum daily 8-h average(MDA8) O3 higher(lower) than 160 µg·m-3 were defined as polluted(clean) days. Differences in the source contribution between clean days and polluted days were compared, and a typical pollution period was selected for further process analysis. The results showed that NO2 in Zibo mainly came from local emissions in summer, with a relative contribution of 45.1%. Vehicle emissions(33.8%) and natural sources(20.7%) were the primary NO2 sources. VOC contributions from natural sources, solvent usage, and the petrochemical industry were significant, with a total contribution of 78.5%. The MDA8 contribution from local sources was 21.4%, whereas the impact of regional transport(32%) and surrounding cities(26.8%) was also substantial. Among local emission sources, vehicle emissions, the power industry, and the building materials industry contributed 10.9%-18.8% to local MDA8. On O3 pollution days, the MDA8 contribution from local emissions and surrounding cities increased. However, the relative contributions from local sources were similar under different pollution conditions.

2.
Sci Total Environ ; 872: 162118, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36791851

RESUMO

The relationship between O3 and its precursors during urban polluted episodes remains unclear. In this study, the simultaneous source apportionment of VOCs, NOx, and O3 over the Yangtze River Delta (YRD) region during the O3 polluted episode on July 24-30, 2018, was performed based on the Integrated Source Apportionment Method (ISAM) embedded in the Community Multiscale Air Quality Modeling System (CMAQ). The results of the ISAM were compared with those of the Brute Force Method (BFM) and Positive Matrix Factorization (PMF). Furthermore, the differences between the transport contributions of VOCs and NOx, and their impacts on O3 were analyzed. The results indicate that observations of VOCs species can be well captured by simulated VOCs, and the ISAM has a significant advantage in the source apportionment of VOCs, especially for sources emitting highly reactive species. In the clean and polluted periods, the local contribution percentages of VOCs in urban sites ranged from 60 % to 77 %, much higher than those of NOx (31 %-43 %) and O3 (16 %-33 %). NOx and O3 have strong transport abilities with high and close contribution percentages, which are highly correlated, mainly because oxygen atoms produced by the photolysis of NO2 in the aged air mass combined rapidly with O2 to form O3 during transport. The VOCs chemical loss caused by the oxidation of OH radicals during transport makes the ability of VOCs for long-distance transport much weaker than that of NOx. Furthermore, owing to the sufficient aging of VOCs, those contributed by long-distance transport have little effect on O3. To a certain extent, controlling one's NOx emissions can help other cities more, while controlling one's VOCs emissions can help itself more. Therefore, it is recommended to attach enough importance to joint prevention and control of NOx among cities and even long-distance areas to alleviate regional O3 pollution.

3.
Sci Total Environ ; 869: 161817, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36708842

RESUMO

The emission and environmental impact of condensable particulate matter (CPM) from coal-fired power plants (CFPPs) are of increasing concern worldwide. Many studies on the characteristics of CPM emission have been conducted in China, but its source profile remains unclear, and its emission inventory remains high uncertainty. In this work, the latest measurements reported in the latest 33 studies for CPM inorganic and organic species emitted from CFPPs in China were summarized, and then a compositional source profile of CPM for CFPPs was developed for the first time in China, which involved 10 inorganic species and 71 organic species. In addition, the CPM emission inventory of CFPPs in Yantai of China was developed based on surveyed activity data, continuous emission monitoring system (CEMS), and the latest measurement data. The results show that: (1) Inorganic species accounted for 77.64 % of CPM emitted from CFPPs in Yantai, among which SO42- had the highest content, accounting for 23.74 % of CPM, followed by Cl-, accounting for 11.95 %; (2) Organic matter accounted for 22.36 % of CPM, among which alkanes accounted for the largest proportion of organic fraction (72.7 %); (3) Emission concentration method (EC) and CEMS-based emission ratio method (ERFPM,CEMS) were recommended to estimate CPM emissions for CFPPs; (4) The estimated CPM emission inventories of Yantai CFPPs in 2020 by the EC method and the ERFPM,CEMS method were 1231 tons and 929 tons, respectively, with uncertainties of -34 % ∼ 33 % and -27 % ∼ 57 %, respectively; (5) CPM emissions were mainly distributed in the northern coastal areas of Yantai. This developed CPM source profile and emission inventory can provide basic data for assessing the impacts of CPM on air quality and health. In addition, this study can provide an important methodology for developing CPM emission inventories and CPM emission source profiles for stationary combustion sources in other regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA