Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2406434, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39039968

RESUMO

Chronic nonhealing skin wounds, characterized by reduced tissue contractility and inhibited wound cell survival under hyperglycemia and hypoxia, present a significant challenge in diabetic care. Here, an advanced self-contraction bioactive core-shell microgel assembly with robust tissue-adhesion (SMART-EXO) is introduced to expedite diabetic wound healing. The SMART-EXO dressing exhibits strong, reversible adhesion to damaged tissue due to abundant hydrogen and dynamic coordination bonds. Additionally, the core-shell microgel components and dynamic coordination bonds provide moderate rigidity, customizable self-contraction, and an interlinked porous architecture. The triggered in situ self-contraction of the SMART-EXO dressing enables active, tunable wound contraction, activating mechanotransduction in the skin and promoting the optimal fibroblast-to-myofibroblast conversion, collagen synthesis, and angiogenesis. Concurrently, the triggered contraction of SMART-EXO facilitates efficient loading and on-demand release of bioactive exosomes, contributing to re-epithelialization and wound microenvironment regulation in diabetic mice. RNA-seq results reveal the activation of critical signaling pathways associated with mechanosensing and exosome regulation, highlighting the combined biomechanical and biochemical mechanisms. These findings underscore SMART-EXO as a versatile, adaptable solution to the complex challenges of diabetic wound care.

2.
Plant Phenomics ; 6: 0205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077119

RESUMO

Drought stress is one of the main threats to poplar plant growth and has a negative impact on plant yield. Currently, high-throughput plant phenotyping has been widely studied as a rapid and nondestructive tool for analyzing the growth status of plants, such as water and nutrient content. In this study, a combination of computer vision and deep learning was used for drought-stressed poplar sapling phenotyping. Four varieties of poplar saplings were cultivated, and 5 different irrigation treatments were applied. Color images of the plant samples were captured for analysis. Two tasks, including leaf posture calculation and drought stress identification, were conducted. First, instance segmentation was used to extract the regions of the leaf, petiole, and midvein. A dataset augmentation method was created for reducing manual annotation costs. The horizontal angles of the fitted lines of the petiole and midvein were calculated for leaf posture digitization. Second, multitask learning models were proposed for simultaneously determining the stress level and poplar variety. The mean absolute errors of the angle calculations were 10.7° and 8.2° for the petiole and midvein, respectively. Drought stress increased the horizontal angle of leaves. Moreover, using raw images as the input, the multitask MobileNet achieved the highest accuracy (99% for variety identification and 76% for stress level classification), outperforming widely used single-task deep learning models (stress level classification accuracies of <70% on the prediction dataset). The plant phenotyping methods presented in this study could be further used for drought-stress-resistant poplar plant screening and precise irrigation decision-making.

3.
Biomaterials ; 312: 122714, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39079462

RESUMO

Osteosarcoma, a malignant bone tumor often characterized by high hedgehog signaling activity, residual tumor cells, and substantial bone defects, poses significant challenges to both treatment response and postsurgical recovery. Here, we developed a nanocomposite hydrogel for the sustained co-delivery of bioactive magnesium ions, anti-PD-L1 antibody (αPD-L1), and hedgehog pathway antagonist vismodegib, to eradicate residual tumor cells while promoting bone regeneration post-surgery. In a mouse model of tibia osteosarcoma, this hydrogel-mediated combination therapy led to remarkable tumor growth inhibition and hence increased animal survival by enhancing the activity of tumor-suppressed CD8+ T cells. Meanwhile, the implanted hydrogel improved the microenvironment of osteogenesis through long-term sustained release of Mg2+, facilitating bone defect repair by upregulating the expression of osteogenic genes. After 21 days, the expression levels of ALP, COL1, RUNX2, and BGLAP in the Vis-αPD-L1-Gel group were approximately 4.1, 5.1, 5.5, and 3.4 times higher than those of the control, respectively. We believe that this hydrogel-based combination therapy offers a potentially valuable strategy for treating osteosarcoma and addressing the tumor-related complex bone diseases.

4.
Nat Commun ; 15(1): 5460, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937462

RESUMO

Developing superporous hemostatic sponges with simultaneously enhanced permeability and mechanical properties remains challenging but highly desirable to achieve rapid hemostasis for non-compressible hemorrhage. Typical approaches to improve the permeability of hemostatic sponges by increasing porosity sacrifice mechanical properties and yield limited pore interconnectivity, thereby undermining the hemostatic efficacy and subsequent tissue regeneration. Herein, we propose a temperature-assisted secondary network compaction strategy following the phase separation-induced primary compaction to fabricate the superporous chitosan sponge with highly-interconnected porous structure, enhanced blood absorption rate and capacity, and fatigue resistance. The superporous chitosan sponge exhibits rapid shape recovery after absorbing blood and maintains sufficient pressure on wounds to build a robust physical barrier to greatly improve hemostatic efficiency. Furthermore, the superporous chitosan sponge outperforms commercial gauze, gelatin sponges, and chitosan powder by enhancing hemostatic efficiency, cell infiltration, vascular regeneration, and in-situ tissue regeneration in non-compressible organ injury models, respectively. We believe the proposed secondary network compaction strategy provides a simple yet effective method to fabricate superporous hemostatic sponges for diverse clinical applications.


Assuntos
Quitosana , Hemostasia , Hemostáticos , Permeabilidade , Animais , Porosidade , Quitosana/química , Hemostáticos/química , Hemostáticos/farmacologia , Suínos , Hemostasia/fisiologia , Hemorragia/terapia , Masculino
5.
Bioact Mater ; 34: 164-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343773

RESUMO

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

6.
Adv Mater ; 36(15): e2307176, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38295393

RESUMO

Cellular energetics plays an important role in tissue regeneration, and the enhanced metabolic activity of delivered stem cells can accelerate tissue repair and regeneration. However, conventional hydrogels with limited network cell adaptability restrict cell-cell interactions and cell metabolic activities. In this work, it is shown that a cell-adaptable hydrogel with high network dynamics enhances the glucose uptake and fatty acid ß-oxidation of encapsulated human mesenchymal stem cells (hMSCs) compared with a hydrogel with low network dynamics. It is further shown that the hMSCs encapsulated in the high dynamic hydrogels exhibit increased tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) biosynthesis via an E-cadherin- and AMP-activated protein kinase (AMPK)-dependent mechanism. The in vivo evaluation further showed that the delivery of MSCs by the dynamic hydrogel enhanced in situ bone regeneration in an animal model. It is believed that the findings provide critical insights into the impact of stem cell-biomaterial interactions on cellular metabolic energetics and the underlying mechanisms.


Assuntos
Hidrogéis , Cicatrização , Animais , Humanos , Regeneração Óssea , Comunicação Celular , Proliferação de Células , Diferenciação Celular
7.
Nat Commun ; 15(1): 239, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172138

RESUMO

Effective and easy regulation of hydrogel surface properties without changing the overall chemical composition is important for their diverse applications but remains challenging to achieve. We report a generalizable strategy to reconfigure hydrogel surface networks based on hydrogel-substrate interface dynamics for manipulation of hydrogel surface wettability and bioadhesion. We show that the grafting of hydrophobic yet flexible polymeric chains on mold substrates can significantly elevate the content of hydrophobic polymer backbones and reduce the presence of polar groups in hydrogel surface networks, thereby transforming the otherwise hydrophilic hydrogel surface into a hydrophobic surface. Experimental results show that the grafted highly dynamic hydrophobic chains achieved with optimal grafting density, chain length, and chain structure are critical for such substantial hydrogel surface network reconfiguration. Molecular dynamics simulations further reveal the atomistic details of the hydrogel network reconfiguration induced by the dynamic interface interactions. The hydrogels prepared using our strategy show substantially enhanced bioadhesion and transdermal delivery compared with the hydrogels of the same chemical composition but fabricated via the conventional method. Our findings provide important insights into the dynamic hydrogel-substrate interactions and are instrumental to the preparation of hydrogels with custom surface properties.

8.
Adv Healthc Mater ; 13(18): e2303532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38108565

RESUMO

Repairing critical size bone defects (CSBD) is a major clinical challenge and requires effective intervention by biomaterial scaffolds. Inspired by the fact that the cartilaginous template-based endochondral ossification (ECO) process is crucial to bone healing and development, developing biomimetic biomaterials to promote ECO is recognized as a promising approach for repairing CSBD. With the unique highly hydrated 3D polymeric network, hydrogels can be designed to closely emulate the physiochemical properties of cartilage matrix to facilitate ECO. In this review, the various preparation methods of hydrogels possessing the specific physiochemical properties required for promoting ECO are introduced. The materiobiological impacts of the physicochemical properties of hydrogels, such as mechanical properties, topographical structures and chemical compositions on ECO, and the associated molecular mechanisms related to the BMP, Wnt, TGF-ß, HIF-1α, FGF, and RhoA signaling pathways are further summarized. This review provides a detailed coverage on the materiobiological insights required for the design and preparation of hydrogel-based biomaterials to facilitate bone regeneration.


Assuntos
Materiais Biomiméticos , Regeneração Óssea , Hidrogéis , Osteogênese , Hidrogéis/química , Regeneração Óssea/efeitos dos fármacos , Humanos , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA