Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(23): eadg0330, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285422

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern challenge the efficacy of approved vaccines, emphasizing the need for updated spike antigens. Here, we use an evolutionary-based design aimed at boosting protein expression levels of S-2P and improving immunogenic outcomes in mice. Thirty-six prototype antigens were generated in silico and 15 were produced for biochemical analysis. S2D14, which contains 20 computationally designed mutations within the S2 domain and a rationally engineered D614G mutation in the SD2 domain, has an ~11-fold increase in protein yield and retains RBD antigenicity. Cryo-electron microscopy structures reveal a mixture of populations in various RBD conformational states. Vaccination of mice with adjuvanted S2D14 elicited higher cross-neutralizing antibody titers than adjuvanted S-2P against the SARS-CoV-2 Wuhan strain and four variants of concern. S2D14 may be a useful scaffold or tool for the design of future coronavirus vaccines, and the approaches used for the design of S2D14 may be broadly applicable to streamline vaccine discovery.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Anticorpos Antivirais , Testes de Neutralização , Microscopia Crioeletrônica
2.
Plant Commun ; 4(5): 100610, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37147799

RESUMO

Correct measurement of environmental parameters is fundamental for plant fitness and survival, as well as for timing developmental transitions, including the switch from vegetative to reproductive growth. Important parameters that affect flowering time include day length (photoperiod) and temperature. Their response pathways have been best described in Arabidopsis, which currently offers a detailed conceptual framework and serves as a comparison for other species. Rice, the focus of this review, also possesses a photoperiodic flowering pathway, but 150 million years of divergent evolution in very different environments have diversified its molecular architecture. The ambient temperature perception pathway is strongly intertwined with the photoperiod pathway and essentially converges on the same genes to modify flowering time. When observing network topologies, it is evident that the rice flowering network is centered on EARLY HEADING DATE 1, a rice-specific transcriptional regulator. Here, we summarize the most important features of the rice photoperiodic flowering network, with an emphasis on its uniqueness, and discuss its connections with hormonal, temperature perception, and stress pathways.


Assuntos
Arabidopsis , Oryza , Flores/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotoperíodo , Ritmo Circadiano/fisiologia , Arabidopsis/genética
3.
Nat Plants ; 9(4): 525-534, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36973415

RESUMO

Many plant species monitor and respond to changes in day length (photoperiod) for aligning reproduction with a favourable season. Day length is measured in leaves and, when appropriate, leads to the production of floral stimuli called florigens that are transmitted to the shoot apical meristem to initiate inflorescence development1. Rice possesses two florigens encoded by HEADING DATE 3a (Hd3a) and RICE FLOWERING LOCUS T 1 (RFT1)2. Here we show that the arrival of Hd3a and RFT1 at the shoot apical meristem activates FLOWERING LOCUS T-LIKE 1 (FT-L1), encoding a florigen-like protein that shows features partially differentiating it from typical florigens. FT-L1 potentiates the effects of Hd3a and RFT1 during the conversion of the vegetative meristem into an inflorescence meristem and organizes panicle branching by imposing increasing determinacy to distal meristems. A module comprising Hd3a, RFT1 and FT-L1 thus enables the initiation and balanced progression of panicle development towards determinacy.


Assuntos
Florígeno , Oryza , Florígeno/metabolismo , Meristema/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores , Reprodução , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo
4.
Plants (Basel) ; 11(11)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35684285

RESUMO

We previously reported that proline modulates root meristem size in Arabidopsis by controlling the ratio between cell division and cell differentiation. Here, we show that proline metabolism affects the levels of superoxide anion (O2•-) and hydrogen peroxide (H2O2), which, in turn, modulate root meristem size and root elongation. We found that hydrogen peroxide plays a major role in proline-mediated root elongation, and its effects largely overlap those induced by proline, influencing root meristem size, root elongation, and cell cycle. Though a combination of genetic and pharmacological evidence, we showed that the short-root phenotype of the proline-deficient p5cs1 p5cs2/P5CS2, an Arabidopsis mutant homozygous for p5cs1 and heterozygous for p5cs2, is caused by H2O2 accumulation and is fully rescued by an effective H2O2 scavenger. Furthermore, by studying Arabidopsis mutants devoid of ProDH activity, we disclosed the essential role of this enzyme in the modulation of root meristem size as the main enzyme responsible for H2O2 production during proline degradation. Proline itself, on the contrary, may not be able to directly control the levels of H2O2, although it seems able to enhance the enzymatic activity of catalase (CAT) and ascorbate peroxidase (APX), the two most effective scavengers of H2O2 in plant cells. We propose a model in which proline metabolism participates in a delicate antioxidant network to balance H2O2 formation and degradation and fine-tune root meristem size in Arabidopsis.

5.
Plant Cell ; 34(2): 742-758, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34865106

RESUMO

During moderate severity drought and low water potential (ψw) stress, poorly understood signaling mechanisms restrict both meristem cell division and subsequent cell expansion. We found that the Arabidopsis thaliana Clade E Growth-Regulating 2 (EGR2) protein phosphatase and Microtubule-Associated Stress Protein 1 (MASP1) differed in their stoichiometry of protein accumulation across the root meristem and had opposing effects on root meristem activity at low ψw. Ectopic MASP1 or EGR expression increased or decreased, respectively, root meristem size and root elongation during low ψw stress. This, along with the ability of phosphomimic MASP1 to overcome the EGR-mediated suppression of root meristem size and the observation that ectopic EGR expression had no effect on unstressed plants, indicated that during low ψw EGR activation and attenuation of MASP1 phosphorylation in their overlapping zone of expression determines root meristem size and activity. Ectopic EGR expression also decreased root cell size at low ψw. Conversely, both the egr1-1 egr2-1 and egr1-1 egr2-1 masp1-1 mutants had similarly increased root cell size but only egr1-1egr2-1 had increased cell division. These observations demonstrated that EGRs affect meristem activity via MASP1 but affect cell expansion via other mechanisms. Interestingly, EGR2 was highly expressed in the root cortex, a cell type important for growth regulation and environmental response.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Meristema/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Raízes de Plantas/fisiologia , Divisão Celular , Tamanho Celular , Desidratação , Secas , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Células Vegetais , Plantas Geneticamente Modificadas , Proteína Fosfatase 2C/fisiologia
6.
Sci Rep ; 11(1): 17925, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504197

RESUMO

Ras-specific proteases to degrade RAS within cancer cells are under active development as an innovative strategy to treat tumorigenesis. The naturally occurring biological toxin effector called RAS/RAP1-specific endopeptidase (RRSP) is known to cleave all RAS within a cell, including HRAS, KRAS, NRAS and mutant KRAS G13D. Yet, our understanding of the mechanisms by which RRSP drives growth inhibition are unknown. Here, we demonstrate, using isogenic mouse fibroblasts expressing a single isoform of RAS or mutant KRAS, that RRSP equally inactivates all isoforms of RAS as well as the major oncogenic KRAS mutants. To investigate how RAS processing might lead to varying outcomes in cell fate within cancer cells, we tested RRSP against four colorectal cancer cell lines with a range of cell fates. While cell lines highly susceptible to RRSP (HCT116 and SW1463) undergo apoptosis, RRSP treatment of GP5d and SW620 cells induces G1 cell cycle arrest. In some cell lines, growth effects were dictated by rescued expression of the tumor suppressor protein p27 (Kip1). The ability of RRSP to irreversibly inhibit cancer cell growth highlights the antitumor potential of RRSP, and further warrants investigation as a potential anti-tumor therapeutic.


Assuntos
Neoplasias Colorretais/metabolismo , Endopeptidases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Pontos de Checagem do Ciclo Celular , Sobrevivência Celular , Senescência Celular , Fibroblastos , Células HCT116 , Humanos , Camundongos
7.
EMBO Mol Med ; 13(6): e14035, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33998144

RESUMO

Respiratory syncytial virus (RSV) is the leading cause of death from lower respiratory tract infection in infants and children, and is responsible for considerable morbidity and mortality in older adults. Vaccines for pregnant women and elderly which are in phase III clinical studies target people with pre-existing natural immunity against RSV. To investigate the background immunity which will be impacted by vaccination, we single cell-sorted human memory B cells and dissected functional and genetic features of neutralizing antibodies (nAbs) induced by natural infection. Most nAbs recognized both the prefusion and postfusion conformations of the RSV F-protein (cross-binders) while a smaller fraction bound exclusively to the prefusion conformation. Cross-binder nAbs used a wide array of gene rearrangements, while preF-binder nAbs derived mostly from the expansion of B-cell clonotypes from the IGHV1 germline. This latter class of nAbs recognizes an epitope located between Site Ø, Site II, and Site V on the F-protein, identifying an important site of pathogen vulnerability.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Idoso , Anticorpos Neutralizantes , Anticorpos Antivirais , Feminino , Humanos , Gravidez , Proteínas Virais de Fusão/genética
8.
PLoS Pathog ; 16(11): e1008943, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137810

RESUMO

Respiratory syncytial virus (RSV) is a global public health burden for which no licensed vaccine exists. To aid vaccine development via increased understanding of the protective antibody response to RSV prefusion glycoprotein F (PreF), we performed structural and functional studies using the human neutralizing antibody (nAb) RSB1. The crystal structure of PreF complexed with RSB1 reveals a conformational, pre-fusion specific site V epitope with a unique cross-protomer binding mechanism. We identify shared structural features between nAbs RSB1 and CR9501, elucidating for the first time how diverse germlines obtained from different subjects can develop convergent molecular mechanisms for recognition of the same PreF site of vulnerability. Importantly, RSB1-like nAbs were induced upon immunization with PreF in naturally-primed cattle. Together, this work reveals new details underlying the immunogenicity of site V and further supports PreF-based vaccine development efforts.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Imunogenicidade da Vacina/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vírus Sinciciais Respiratórios/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Bovinos , Cristalografia por Raios X , Humanos , Imunização , Modelos Estruturais
9.
Proc Natl Acad Sci U S A ; 117(29): 16938-16948, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32616570

RESUMO

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Furthermore, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutant RAS Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising approach to developing RAS therapeutics against a broad array of cancers.


Assuntos
Toxina Diftérica/metabolismo , Endopeptidases/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Proteólise , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Antineoplásicos/uso terapêutico , Células Cultivadas , Toxina Diftérica/química , Toxina Diftérica/genética , Endopeptidases/química , Endopeptidases/genética , Feminino , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Nus , Mutação , Sinais Direcionadores de Proteínas , Proteínas Recombinantes/uso terapêutico , Proteínas ras/genética
10.
Chembiochem ; 21(19): 2772-2776, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32369652

RESUMO

The nontoxic, anthrax protective antigen/lethal factor N-terminal domain (PA/LFN ) complex is an effective platform for translocating proteins into the cytosol of cells. Mutant PA (mPA) was recently fused to epidermal growth factor (EGF) to retarget delivery of LFN to cells bearing EGF receptors (EGFR), but the requirement for a known cognate ligand limits the applicability of this approach. Here, we render practical protective antigen retargeting to a variety of receptors with mPA single-chain variable fragment (scFv) fusion constructs. Our design enables the targeting of two pancreatic cancer-relevant receptors, EGFR and carcinoembryonic antigen. We demonstrate that fusion to scFvs does not disturb the basic functions of mPA. Moreover, mPA-scFv fusions enable cell-specific delivery of diphtheria toxin catalytic domain and Ras/Rap1-specific endopeptidase to pancreatic cancer cells. Importantly, mPA-scFv fusion-based treatments display potent cell-specific toxicity in vitro, opening fundamentally new routes toward engineered immunotoxins and providing a potential solution to the challenge of targeted protein delivery to the cytosol of cancer cells.


Assuntos
Antígenos de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Antígeno Carcinoembrionário/metabolismo , Endopeptidases/metabolismo , Neoplasias Pancreáticas/metabolismo , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Citosol/metabolismo , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Neoplasias Pancreáticas/patologia
11.
Methods Mol Biol ; 2091: 163-179, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31773580

RESUMO

Protein purification is the most basic and critical step for protein biophysical and biochemical studies to understand its function and structure. Various fusion tags and proteases have been developed and assembled in expression and purification system. However, it is one of the fields that continues to innovate to develop improved systems that are more efficient, simpler, and less expensive. An efficient self-cleavage C-terminal fusion system was developed using the inositol hexakisphosphate-inducible Vibrio cholerae MARTXVc toxin cysteine protease domain (CPD). CPD fusion proteins are expressed from the T7 promoter and purified using a 6xHis-tag with immobilized-metal affinity chromatography. The C-terminal CPD-tag is removed by self-cleavage at the final purification stage. Here, we describe an efficient cloning method using Gibson assembly, followed by expression and purification of tagless recombinant proteins of interest using CPD self-cleavage.


Assuntos
Toxinas Bacterianas/química , Clonagem Molecular/métodos , Ácido Fítico/metabolismo , Vibrio cholerae/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Cromatografia de Afinidade , Histidina/química , Domínios Proteicos , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
12.
BMC Plant Biol ; 18(1): 356, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30558541

RESUMO

BACKGROUND: In many plants, the amino acid proline is strongly accumulated in pollen and disruption of proline synthesis caused abortion of microspore development in Arabidopsis. So far, it was unclear whether local biosynthesis or transport of proline determines the success of fertile pollen development. RESULTS: We analyzed the expression pattern of the proline biosynthetic genes PYRROLINE-5-CARBOXYLATE SYNTHETASE 1 & 2 (P5CS1 & 2) in Arabidopsis anthers and both isoforms were strongly expressed in developing microspores and pollen grains but only inconsistently in surrounding sporophytic tissues. We introduced in a p5cs1/p5cs1 p5cs2/P5CS2 mutant background an additional copy of P5CS2 under the control of the Cauliflower Mosaic Virus (CaMV) 35S promoter, the tapetum-specific LIPID TRANSFER PROTEIN 12 (Ltp12) promoter or the pollen-specific At5g17340 promoter to determine in which site proline biosynthesis can restore the fertility of proline-deficient microspores. The specificity of these promoters was confirmed by ß-glucuronidase (GUS) analysis, and by direct proline measurement in pollen grains and stage-9/10 anthers. Expression of P5CS2 under control of the At5g17340 promoter fully rescued proline content and normal morphology and fertility of mutant pollen. In contrast, expression of P5CS2 driven by either the Ltp12 or CaMV35S promoter caused only partial restoration of pollen development with little effect on pollen fertility. CONCLUSIONS: Overall, our results indicate that proline transport is not able to fulfill the demand of the cells of the male germ line. Pollen development and fertility depend on local proline biosynthesis during late stages of microspore development and in mature pollen grains.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Glutamato-5-Semialdeído Desidrogenase/genética , Complexos Multienzimáticos/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Prolina/biossíntese , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Glutamato-5-Semialdeído Desidrogenase/metabolismo , Complexos Multienzimáticos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Esporos/genética
13.
Sci Signal ; 11(550)2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279169

RESUMO

The Ras-extracellular signal-regulated kinase pathway is critical for controlling cell proliferation, and its aberrant activation drives the growth of various cancers. Because many pathogens produce toxins that inhibit Ras activity, efforts to develop effective Ras inhibitors to treat cancer could be informed by studies of Ras inhibition by pathogens. Vibrio vulnificus causes fatal infections in a manner that depends on multifunctional autoprocessing repeats-in-toxin, a toxin that releases bacterial effector domains into host cells. One such domain is the Ras/Rap1-specific endopeptidase (RRSP), which site-specifically cleaves the Switch I domain of the small GTPases Ras and Rap1. We solved the crystal structure of RRSP and found that its backbone shares a structural fold with the EreA/ChaN-like superfamily of enzymes. Unlike other proteases in this family, RRSP is not a metalloprotease. Through nuclear magnetic resonance analysis and nucleotide exchange assays, we determined that the processing of KRAS by RRSP did not release any fragments or cause KRAS to dissociate from its bound nucleotide but instead only locally affected its structure. However, this structural alteration of KRAS was sufficient to disable guanine nucleotide exchange factor-mediated nucleotide exchange and prevent KRAS from binding to RAF. Thus, RRSP is a bacterial effector that represents a previously unrecognized class of protease that disconnects Ras from its signaling network while inducing limited structural disturbance in its target.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Endopeptidases/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Cristalografia por Raios X , Endopeptidases/química , Endopeptidases/genética , Células HeLa , Humanos , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Conformação Proteica , Proteólise , Homologia de Sequência de Aminoácidos
14.
Biochemistry ; 56(21): 2747-2757, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28459538

RESUMO

Ras/Rap1-specific endopeptidase (RRSP) is a cytotoxic effector domain of the multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of highly virulent strains of Vibrio vulnificus. RRSP blocks RAS-MAPK kinase signaling by cleaving Ras and Rap1 within the switch I region between Y32 and D33. Although the RRSP processing site is highly conserved among small GTPases, only Ras and Rap1 have been identified as proteolytic substrates. Here we report that residues Y32 and D33 at the scissile bond play an important role in RRSP substrate recognition, while the nucleotide state of Ras has an only minimal effect. In addition, substrate specificity is generated by residues across the entire switch I region. Indeed, swapping the Ras switch I region into either RalA or RhoA, GTPases that are not recognized by RRSP, generated chimeras that are substrates of RRSP. However, a difference in the processing efficiency of Ras switch I in the context of Ras, RalA, or RhoA indicates that protein regions outside Ras switch I also contribute to efficient RRSP substrate recognition. Moreover, we show that synthetic peptides corresponding to the Ras and Rap1, but not RalA, switch I regions are cleaved by RRSP, demonstrating sequence-specific substrate recognition. In conclusion, this work demonstrates that the GTPase recognition of RRSP is independent of the nucleotide state and is mainly driven by the Ras and Rap1 switch I loop and also influenced by additional protein-protein interactions, increasing the substrate specificity of RRSP.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Vibrio vulnificus/enzimologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Humanos , Modelos Moleculares , Especificidade por Substrato , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/química
15.
BMC Biotechnol ; 17(1): 1, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28056928

RESUMO

BACKGROUND: Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. RESULTS: In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called "the CPD-tag". The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. CONCLUSION: pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins.


Assuntos
Clonagem Molecular/métodos , Cisteína Proteases/genética , Vetores Genéticos/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes de Fusão/genética , Vibrio cholerae/genética , Cisteína Proteases/isolamento & purificação , Histidina/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
16.
Oncotarget ; 7(49): 80336-80349, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27637077

RESUMO

The observation that cellular transformation depends on breaching a crucial KRAS activity threshold, along with the finding that only a small percentage of cellsharboring KRAS mutations are transformed, support the idea that additional, not fully uncovered, regulatory mechanisms may contribute to KRAS activation. Here we report that KrasG12D mice lacking Sirt2 show an aggressive tumorigenic phenotype as compared to KrasG12D mice. This phenotype includes increased proliferation, KRAS acetylation, and activation of RAS downstream signaling markers. Mechanistically, KRAS K147 is identified as a novel SIRT2-specific deacetylation target by mass spectrometry, whereas its acetylation status directly regulates KRAS activity, ultimately exerting an impact on cellular behavior as revealed by cell proliferation, colony formation, and tumor growth. Given the significance of KRAS activity as a driver in tumorigenesis, identification of K147 acetylation as a novel post-translational modification directed by SIRT2 in vivo may provide a better understanding of the mechanistic link regarding the crosstalk between non-genetic and genetic factors in KRAS driven tumors.


Assuntos
Adenocarcinoma/enzimologia , Transformação Celular Neoplásica/metabolismo , Deleção de Genes , Neoplasias Pulmonares/enzimologia , Neoplasias Pancreáticas/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Sirtuína 2/deficiência , Acetilação , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Células HCT116 , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Lisina , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Mutação , Células NIH 3T3 , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Sirtuína 2/genética , Fatores de Tempo , Carga Tumoral
17.
BMC Plant Biol ; 15: 263, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26514776

RESUMO

BACKGROUND: We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth. RESULTS: To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone. On the contrary, proline appears to control cell division in early stages of postembryonic root development, as shown by the expression of the G2/M-specific CYCLINB1;1 (CYCB1;1) gene. CONCLUSIONS: The overall data suggest that proline can modulate the size of root meristematic zone in Arabidopsis likely controlling cell division and, in turn, the ratio between cell division and cell differentiation.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Prolina/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/metabolismo , Mutação/genética , Tamanho do Órgão/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia
18.
Front Plant Sci ; 6: 680, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26388884

RESUMO

Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance.

20.
Nat Commun ; 6: 7396, 2015 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-26051945

RESUMO

Ras (Rat sarcoma) protein is a central regulator of cell growth and proliferation. Mutations in the RAS gene are known to occur in human cancers and have been shown to contribute to carcinogenesis. In this study, we show that the multifunctional-autoprocessing repeats-in-toxin (MARTX) toxin-effector domain DUF5(Vv) from Vibrio vulnificus to be a site-specific endopeptidase that cleaves within the Switch 1 region of Ras and Rap1. DUF5(Vv) processing of Ras, which occurs both biochemically and in mammalian cell culture, inactivates ERK1/2, thereby inhibiting cell proliferation. The ability to cleave Ras and Rap1 is shared by DUF5(Vv) homologues found in other bacteria. In addition, DUF5(Vv )can cleave all Ras isoforms and KRas with mutations commonly implicated in malignancies. Therefore, we speculate that this new family of Ras/Rap1-specific endopeptidases (RRSPs) has potential to inactivate both wild-type and mutant Ras proteins expressed in malignancies.


Assuntos
Toxinas Bacterianas/metabolismo , Vibrio vulnificus/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA