Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Pharmaceutics ; 15(5)2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37242749

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer, and is among the most aggressive and still incurable cancers. Innovative and successful therapeutic strategies are extremely needed. Peptides represent a versatile and promising tool to achieve tumor targeting, thanks to their ability to recognize specific target proteins (over)expressed on the surface of cancer cells. A7R is one such peptide, binding neuropilin-1 (NRP-1) and VEGFR2. Since PDAC expresses these receptors, the aim of this study was to test if A7R-drug conjugates could represent a PDAC-targeting strategy. PAPTP, a promising mitochondria-targeted anticancer compound, was selected as the cargo for this proof-of-concept study. Derivatives were designed as prodrugs, using a bioreversible linker to connect PAPTP to the peptide. Both the retro-inverso (DA7R) and the head-to-tail cyclic (cA7R) protease-resistant analogs of A7R were tested, and a tetraethylene glycol chain was introduced to improve solubility. Uptake of a fluorescent DA7R conjugate, as well as of the PAPTP-DA7R derivative into PDAC cell lines was found to be related to the expression levels of NRP-1 and VEGFR2. Conjugation of DA7R to therapeutically active compounds or nanovehicles might allow PDAC-targeted drug delivery, improving the efficacy of the therapy and reducing off-target effects.

3.
Cell Death Dis ; 13(12): 1055, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539400

RESUMO

Ion channels are non-conventional, druggable oncological targets. The intermediate-conductance calcium-dependent potassium channel (KCa3.1) is highly expressed in the plasma membrane and in the inner mitochondrial membrane (mitoKCa3.1) of various cancer cell lines. The role mitoKCa3.1 plays in cancer cells is still undefined. Here we report the synthesis and characterization of two mitochondria-targeted novel derivatives of a high-affinity KCa3.1 antagonist, TRAM-34, which retain the ability to block channel activity. The effects of these drugs were tested in melanoma, pancreatic ductal adenocarcinoma and breast cancer lines, as well as in vivo in two orthotopic models. We show that the mitochondria-targeted TRAM-34 derivatives induce release of mitochondrial reactive oxygen species, rapid depolarization of the mitochondrial membrane, fragmentation of the mitochondrial network. They trigger cancer cell death with an EC50 in the µM range, depending on channel expression. In contrast, inhibition of the plasma membrane KCa3.1 by membrane-impermeant Maurotoxin is without effect, indicating a specific role of mitoKCa3.1 in determining cell fate. At sub-lethal concentrations, pharmacological targeting of mitoKCa3.1 significantly reduced cancer cell migration by enhancing production of mitochondrial reactive oxygen species and nuclear factor-κB (NF-κB) activation, and by downregulating expression of Bcl-2 Nineteen kD-Interacting Protein (BNIP-3) and of Rho GTPase CDC-42. This signaling cascade finally leads to cytoskeletal reorganization and impaired migration. Overexpression of BNIP-3 or pharmacological modulation of NF-κB and CDC-42 prevented the migration-reducing effect of mitoTRAM-34. In orthotopic models of melanoma and pancreatic ductal adenocarcinoma, the tumors at sacrifice were 60% smaller in treated versus untreated animals. Metastasis of melanoma cells to lymph nodes was also drastically reduced. No signs of toxicity were observed. In summary, our results identify mitochondrial KCa3.1 as an unexpected player in cancer cell migration and show that its pharmacological targeting is efficient against both tumor growth and metastatic spread in vivo.


Assuntos
Carcinoma Ductal Pancreático , Melanoma , Neoplasias Pancreáticas , Canais de Potássio Cálcio-Ativados , Animais , NF-kappa B/metabolismo , Cálcio/metabolismo , Canais de Cálcio , Canais de Potássio , Espécies Reativas de Oxigênio/metabolismo , Morte Celular , Mitocôndrias/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/genética , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Neoplasias Pancreáticas
4.
Mol Pharm ; 19(11): 3700-3729, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36174227

RESUMO

Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.


Assuntos
Encéfalo , Nanopartículas , Encéfalo/metabolismo , Barreira Hematoencefálica/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Transcitose , Nanopartículas/química , Fármacos do Sistema Nervoso Central/metabolismo , Preparações Farmacêuticas/metabolismo
6.
Methods Mol Biol ; 2275: 141-160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118036

RESUMO

Resveratrol and quercetin are among the most studied plant polyphenols, and have many health-promoting actions. Strategies to accumulate them into mitochondria may be of therapeutic relevance, since these compounds are redox active and are well known to impact mitochondria and mitochondrial proteins. We report here the procedures to synthesize mitochondria-targeted resveratrol and quercetin derivatives; the synthetic strategies reported are however expected to be adaptable to other polyphenols with similar reactivity at the phenolic hydroxyls. Mitochondrial targeting can be achieved by conjugation with triphenylphosphonium , a lipophilic cation; this was linked via a butyl spacer forming an ether bond with one of the phenolic oxygens. The first step toward the synthesis of all mitochondriotropic derivatives described in this work is the production of a regiospecific -(4-O-chlorobutyl) derivative. Triphenylphosphonium (P+Ph3I-) is then introduced through two consecutive nucleophilic substitution steps: -Cl â†’ -I â†’ -P+Ph3I-. Pure mono-substituted chlorobutyl regioisomers are obtained by purification from the reaction mixture in the case of resveratrol , while specific protection strategies are required for quercetin to favor alkylation of one specific hydroxyl.Functionalization of the remaining hydroxyls can be exploited to modulate the physicochemical properties of the derivatives (i.e., water solubility, affinity for cell membranes); we report here synthetic protocols to obtain acetylated and methylated analogs.A brief description of some methods to assess the accumulation of the derivatives in mitochondria is also given; the proposed techniques are the use of a TPP +-selective electrode (with isolated rat liver mitochondria ) and fluorescence microscopy (with cultured cells).


Assuntos
Mitocôndrias Hepáticas/química , Polifenóis/síntese química , Quercetina/análogos & derivados , Resveratrol/análogos & derivados , Animais , Células HCT116 , Humanos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estrutura Molecular , Compostos Organofosforados/química , Polifenóis/química , Polifenóis/farmacologia , Ratos
7.
Nat Commun ; 12(1): 2103, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833234

RESUMO

Mitochondrial diseases impair oxidative phosphorylation and ATP production, while effective treatment is still lacking. Defective complex III is associated with a highly variable clinical spectrum. We show that pyocyanin, a bacterial redox cycler, can replace the redox functions of complex III, acting as an electron shunt. Sub-µM pyocyanin was harmless, restored respiration and increased ATP production in fibroblasts from five patients harboring pathogenic mutations in TTC19, BCS1L or LYRM7, involved in assembly/stabilization of complex III. Pyocyanin normalized the mitochondrial membrane potential, and mildly increased ROS production and biogenesis. These in vitro effects were confirmed in both DrosophilaTTC19KO and in Danio rerioTTC19KD, as administration of low concentrations of pyocyanin significantly ameliorated movement proficiency. Importantly, daily administration of pyocyanin for two months was not toxic in control mice. Our results point to utilization of redox cyclers for therapy of complex III disorders.


Assuntos
Trifosfato de Adenosina/biossíntese , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Membrana/genética , Doenças Mitocondriais/tratamento farmacológico , Proteínas Mitocondriais/genética , Piocianina/farmacologia , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Animais Geneticamente Modificados , Linhagem Celular , Drosophila melanogaster , Complexo III da Cadeia de Transporte de Elétrons/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Doenças Mitocondriais/patologia , Chaperonas Moleculares/genética , Oxirredução/efeitos dos fármacos , Piocianina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peixe-Zebra
8.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562146

RESUMO

A developing family of chemotherapeutics-derived from 5-(4-phenoxybutoxy)psoralen (PAP-1)-target mitochondrial potassium channel mtKv1.3 to selectively induce oxidative stress and death of diseased cells. The key to their effectiveness is the presence of a positively charged triphenylphosphonium group which drives their accumulation in the organelles. These compounds have proven their preclinical worth in murine models of cancers such as melanoma and pancreatic adenocarcinoma. In in vitro experiments they also efficiently killed glioblastoma cells, but in vivo they were powerless against orthotopic glioma because they were completely unable to overcome the blood-brain barrier. In an effort to improve brain delivery we have now coupled one of these promising compounds, PAPTP, to well-known cell-penetrating and brain-targeting peptides TAT48-61 and Angiopep-2. Coupling has been obtained by linking one of the phenyl groups of the triphenylphosphonium to the first amino acid of the peptide via a reversible carbamate ester bond. Both TAT48-61 and Angiopep-2 allowed the delivery of 0.3-0.4 nmoles of construct per gram of brain tissue upon intravenous (i.v.) injection of 5 µmoles/kg bw to mice. This is the first evidence of PAPTP delivery to the brain; the chemical strategy described here opens the possibility to conjugate PAPTP to small peptides in order to fine-tune tissue distribution of this interesting compound.

9.
Cell Physiol Biochem ; 55(1): 61-90, 2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33508184

RESUMO

Pancreatic cancers are among the most ominous, and among the most studied. Their complexities have provided ample material for a huge investigative effort, which is briefly surveyed in this review. Eradication by surgery has proven extremely difficult, and a successful chemotherapeutic approach is desperately needed. Treatment with "traditional" anticancer drugs, such as benchmark gemcitabine or the current standard-of-care FOLFIRINOX quaternary combination increase the mean overall survival by only a few months and often leads to chemoresistance. Much work is therefore currently devoted to potentiating our pharmacological weapons by accurate targeting and, in particular, by acting on the dense tumoral stroma, a distinctive feature of PDAC accounting for much of the therapeutic difficulty. We give an overview of recent developments, touching on the major aspects of PDAC physiology and biochemistry, currently-used and experimental drugs, and targeting technologies under development. A few papers are discussed in some detail to help provide a sense of how the field is moving.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia
10.
Redox Biol ; 42: 101846, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419703

RESUMO

Pharmacological targeting of mitochondrial ion channels is emerging as a promising approach to eliminate cancer cells; as most of these channels are differentially expressed and/or regulated in cancer cells in comparison to healthy ones, this strategy may selectively eliminate the former. Perturbation of ion fluxes across the outer and inner membranes is linked to alterations of redox state, membrane potential and bioenergetic efficiency. This leads to indirect modulation of oxidative phosphorylation, which is/may be fundamental for both cancer and cancer stem cell survival. Furthermore, given the crucial contribution of mitochondria to intrinsic apoptosis, modulation of their ion channels leading to cytochrome c release may be of great advantage in case of resistance to drugs triggering apoptotic events upstream of the mitochondrial phase. In the present review, we give an overview of the known mitochondrial ion channels and of their modulators capable of killing cancer cells. In addition, we discuss state-of-the-art strategies using mitochondriotropic drugs or peptide-based approaches allowing a more efficient and selective targeting of mitochondrial ion channel-linked events.


Assuntos
Mitocôndrias , Neoplasias , Apoptose , Citocromos c/metabolismo , Humanos , Canais Iônicos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico
11.
Pharmacol Res ; 164: 105326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33338625

RESUMO

The two-pore potassium channel TASK-3 has been shown to localize to both the plasma membrane and the mitochondrial inner membrane. TASK-3 is highly expressed in melanoma and breast cancer cells and has been proposed to promote tumor formation. Here we investigated whether pharmacological modulation of TASK-3, and specifically of mitochondrial TASK-3 (mitoTASK-3), had any effect on cancer cell survival and mitochondrial physiology. A novel, mitochondriotropic version of the specific TASK-3 inhibitor IN-THPP has been synthesized by addition of a positively charged triphenylphosphonium moiety. While IN-THPP was unable to induce apoptosis, mitoIN-THPP decreased survival of breast cancer cells and efficiently killed melanoma lines, which we show to express mitoTASK-3. Cell death was accompanied by mitochondrial membrane depolarization and fragmentation of the mitochondrial network, suggesting a role of the channel in the maintenance of the correct function of this organelle. In accordance, cells treated with mitoIN-THPP became rapidly depleted of mitochondrial ATP which resulted in activation of the AMP-dependent kinase AMPK. Importantly, cell survival was not affected in mouse embryonic fibroblasts and the effect of mitoIN-THPP was less pronounced in human melanoma cells stably knocked down for TASK-3 expression, indicating a certain degree of selectivity of the drug both for pathological cells and for the channel. In addition, mitoIN-THPP inhibited cancer cell migration to a higher extent than IN-THPP in two melanoma cell lines. In summary, our results point to the importance of mitoTASK-3 for melanoma cell survival and migration.


Assuntos
Mitocôndrias/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Pirimidinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/fisiologia , Bloqueadores dos Canais de Potássio/síntese química , Pirimidinas/síntese química , Espécies Reativas de Oxigênio/metabolismo
12.
Oxid Med Cell Longev ; 2021: 7658501, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34992716

RESUMO

Pterostilbene (Pt) is a potentially beneficial plant phenol. In contrast to many other natural compounds (including the more celebrated resveratrol), Pt concentrations producing significant effects in vitro can also be reached with relative ease in vivo. Here we focus on some of the mechanisms underlying its activity, those involved in the activation of transcription factor EB (TFEB). A set of processes leading to this outcome starts with the generation of ROS, attributed to the interaction of Pt with complex I of the mitochondrial respiratory chain, and spreads to involve Ca2+ mobilization from the ER/mitochondria pool, activation of CREB and AMPK, and inhibition of mTORC1. TFEB migration to the nucleus results in the upregulation of autophagy and lysosomal and mitochondrial biogenesis. Cells exposed to several µM levels of Pt experience a mitochondrial crisis, an indication for using low doses in therapeutic or nutraceutical applications. Pt afforded significant functional improvements in a zebrafish embryo model of ColVI-related myopathy, a pathology which also involves defective autophagy. Furthermore, long-term supplementation with Pt reduced body weight gain and increased transcription levels of Ppargc1a and Tfeb in a mouse model of diet-induced obesity. These in vivo findings strengthen the in vitro observations and highlight the therapeutic potential of this natural compound.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Estilbenos/metabolismo , Animais , Modelos Animais de Doenças , Células HeLa , Humanos , Camundongos , Fatores de Transcrição , Peixe-Zebra
13.
Redox Biol ; 37: 101705, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33007503

RESUMO

The potassium channel Kv1.3, involved in several important pathologies, is the target of a family of psoralen-based drugs whose mechanism of action is not fully understood. Here we provide evidence for a physical interaction of the mitochondria-located Kv1.3 (mtKv1.3) and Complex I of the respiratory chain and show that this proximity underlies the death-inducing ability of psoralenic Kv1.3 inhibitors. The effects of PAP-1-MHEG (PAP-1, a Kv1.3 inhibitor, with six monomeric ethylene glycol units attached to the phenyl ring of PAP-1), a more soluble novel derivative of PAP-1 and of its various portions on mitochondrial physiology indicate that the psoralenic moiety of PAP-1 bound to mtKv1.3 facilitates the diversion of electrons from Complex I to molecular oxygen. The resulting massive production of toxic Reactive Oxygen Species leads to death of cancer cells expressing Kv1.3. In vivo, PAP-1-MHEG significantly decreased melanoma volume. In summary, PAP-1-MHEG offers insights into the mechanisms of cytotoxicity of this family of compounds and may represent a valuable clinical tool.


Assuntos
Canal de Potássio Kv1.3 , Mitocôndrias , Animais , Linhagem Celular Tumoral , Dissecação , Humanos , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio
14.
Cell Physiol Biochem ; 53(S1): 11-43, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31834993

RESUMO

Ion channels residing in the inner (IMM) and outer (OMM) mitochondrial membranes are emerging as noteworthy pharmacological targets in oncology. While these aspects have not been investigated for all of them, a role in cancer growth and/or metastasis and/or drug resistance has been shown at least for the IMM-residing Ca2+ uniporter complex and K+- selective mtKV1.3, mtIKCa, mtSKCa and mtTASK-3, and for the OMM Voltage-Dependent Anion Channel (mitochondrial porin). A special case is that of the Mitochondrial Permeability Transition Pore, a large pore which forms in the IMM of severely stressed cells, and which may be exploited to precipitate the death of cancerous cells. Here we briefly discuss the oncological relevance of mitochondria and their channels, and summarize the methods that can be adopted to selectively target these intracellular organelles. We then present an updated list of known mitochondrial channels, and review the pharmacology of those with proven relevance for cancer.


Assuntos
Antineoplásicos/química , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Bibliotecas de Moléculas Pequenas/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Humanos , Canais Iônicos/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Canais de Potássio/química , Canais de Potássio/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Canais de Ânion Dependentes de Voltagem/química , Canais de Ânion Dependentes de Voltagem/metabolismo
15.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671737

RESUMO

Obesity and related comorbidities are a major health concern. The drugs used to treat these conditions are largely inadequate or dangerous, and a well-researched approach based on nutraceuticals would be highly useful. Pterostilbene (Pt), i.e., 3,5-dimethylresveratrol, has been reported to be effective in animal models of obesity, acting on different metabolic pathways. We investigate here its ability to induce browning of white adipose tissue. Pt (5 µM) was first tested on 3T3-L1 mature adipocytes, and then it was administered (352 µmol/kg/day) to mice fed an obesogenic high-fat diet (HFD) for 30 weeks, starting at weaning. In the cultured adipocytes, the treatment elicited a significant increase of the levels of Uncoupling Protein 1 (UCP1) protein-a key component of thermogenic, energy-dissipating beige/brown adipocytes. In vivo administration antagonized weight increase, more so in males than in females. Analysis of inguinal White Adipose Tissue (WAT) revealed a trend towards browning, with significantly increased transcription of several marker genes (Cidea, Ebf2, Pgc1α, PPARγ, Sirt1, and Tbx1) and an increase in UCP1 protein levels, which, however, did not achieve significance. Given the lack of known side effects of Pt, this study strengthens the candidacy of this natural phenol as an anti-obesity nutraceutical.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Obesidade/metabolismo , Estilbenos/farmacologia , Células 3T3-L1 , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Proteínas Reguladoras de Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peso Corporal , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/genética , PPAR gama/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Sirtuína 1/genética , Proteínas com Domínio T/genética , Termogênese/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Eur J Med Chem ; 181: 111557, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374419

RESUMO

Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.


Assuntos
Produtos Biológicos/farmacologia , Hipolipemiantes/farmacologia , Polifenóis/farmacologia , Animais , Produtos Biológicos/química , Membrana Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hipolipemiantes/química , Lipossomos/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Polifenóis/química
17.
Cell Physiol Biochem ; 52(2): 232-239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816671

RESUMO

BACKGROUND/AIMS: Pterostilbene (Pt; trans-3,5-dimethoxy-4'-hydroxystilbene) is a natural phenol found in blueberries and grapevines. It shows remarkable biomedical activities similar to those of resveratrol. Its high bioavailability is a major advantage for possible biomedical applications. The goal of the study was to evaluate the effects of chronic pterostilbene administration on cognitive performance in aged rats with mild cognitive impairment. METHODS: 18-month-old animals were subjected to behavioral tests to establish the "baseline", then divided into treatment and control groups. The former were chronically fed Pt (22.5 mg/kg-day) for 20 consecutive days. At the end of this period all animals were tested again and sacrificed. The dentate gyrus, the hippocampus and the prefrontal and perirhinal cortices were then collected, and RT-qPCR and/or Western blot analyses were performed on a few transcripts/proteins involved in synaptic remodeling. Mitochondrial content was also assessed. RESULTS: Pt administration improved performance in behavioral tests and positively affected memory consolidation. We found increased levels of REST, PSD-95 and mitochondrial porin1 in the dentate gyrus and a positive correlation between T-maze test score and levels of cAMP responsive element binding protein (CREB) phosphorylation. CONCLUSION: These results underscore the therapeutic potential of Pt supplementation for age-related cognitive decline.


Assuntos
Envelhecimento/metabolismo , Comportamento Animal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Proteína de Ligação a CREB/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Giro Denteado/metabolismo , Proteína 4 Homóloga a Disks-Large/biossíntese , Ratos , Proteínas Repressoras/biossíntese
18.
Br J Pharmacol ; 176(22): 4258-4283, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30440086

RESUMO

The field of mitochondrial ion channels has undergone a rapid development during the last three decades, due to the molecular identification of some of the channels residing in the outer and inner membranes. Relevant information about the function of these channels in physiological and pathological settings was gained thanks to genetic models for a few, mitochondria-specific channels. However, many ion channels have multiple localizations within the cell, hampering a clear-cut determination of their function by pharmacological means. The present review summarizes our current knowledge about the ins and outs of mitochondrial ion channels, with special focus on the channels that have received much attention in recent years, namely, the voltage-dependent anion channels, the permeability transition pore (also called mitochondrial megachannel), the mitochondrial calcium uniporter and some of the inner membrane-located potassium channels. In addition, possible strategies to overcome the difficulties of specifically targeting mitochondrial channels versus their counterparts active in other membranes are discussed, as well as the possibilities of modulating channel function by small peptides that compete for binding with protein interacting partners. Altogether, these promising tools along with large-scale chemical screenings set up to identify new, specific channel modulators will hopefully allow us to pinpoint the actual function of most mitochondrial ion channels in the near future and to pharmacologically affect important pathologies in which they are involved, such as neurodegeneration, ischaemic damage and cancer. LINKED ARTICLES: This article is part of a themed section on Mitochondrial Pharmacology: Featured Mechanisms and Approaches for Therapy Translation. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.22/issuetoc.


Assuntos
Canais Iônicos/fisiologia , Moduladores de Transporte de Membrana/farmacologia , Mitocôndrias/efeitos dos fármacos , Animais , Humanos , Mitocôndrias/fisiologia
19.
Front Oncol ; 8: 122, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740538

RESUMO

Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific "homing" properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a "targeting pro-drug." Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3) has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic) ring system and the triphenylphosphonium (TPP) lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them-a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system-proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.

20.
Ann N Y Acad Sci ; 1403(1): 27-37, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28675763

RESUMO

Prodrugs of resveratrol are under development. Among the long-term goals, still largely elusive, are (1) modulating physical properties (e.g., water-soluble derivatives bearing polyethylene glycol chains), (2) changing distribution in the body (e.g., galactosyl derivatives restricted to the intestinal lumen), (3) increasing absorption from the gastrointestinal tract (e.g., derivatives imitating the natural substrates of endogenous transporters), and (4) hindering phase II metabolism (e.g., temporarily blocking the hydroxyls), all contributing to (5) increasing bioavailability. The chemical bonds that have been tested for functionalization include carboxyester, acetal, and carbamate groups. A second approach, which can be combined with the first, seeks to reinforce or modify the biochemical activities of resveratrol by concentrating the compound at specific subcellular sites. An example is provided by mitochondria-targeted derivatives. These proved to be pro-oxidant and cytotoxic in vitro, selectively killing fast-growing and tumor cells when supplied in the low micromolar range. This suggests the possibility of anticancer applications.


Assuntos
Estresse Oxidativo/efeitos dos fármacos , Pró-Fármacos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Estilbenos/farmacologia , Animais , Humanos , Mitocôndrias/metabolismo , Resveratrol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA