RESUMO
Rectal cancer (RC) accounts for one-third of colorectal cancers (CRC), and 40% of these are locally advanced rectal cancers (LARC). The use of neoadjuvant chemoradiotherapy (nCRT) significantly reduces the rate of local recurrence compared to adjuvant therapy or surgery alone. However, after nCRT, up to 40%-60% of patients show a poor pathological response, while only about 20% achieve a pathological complete response. In this scenario, the identification of novel predictors of tumor response to nCRT is urgently needed to reduce LARC mortality and to spare poorly responding patients from unnecessary treatments. Therefore, by combining gene and microRNA expression datasets with proteomic data from LARC patients, we developed an integrated network centered on seven hub-genes putatively involved in the response to nCRT. In an independent validation cohort of LARC patients, we confirmed that differential expression of NFKB1, TRAF6 and STAT3 is correlated with the response to nCRT. In addition, the functional enrichment analysis also revealed that these genes are strongly related to hallmarks of cancer and inflammation, whose dysfunction may causatively affect LARC patient's response to nCRT. Furthermore, by constructing the transcription factor-module network, we hypothesized a protective role of POU2F3 gene, which could be used as a new drug target in LARC patients. Finally, we identified and tested in vitro entinostat, a histone deacetylase inhibitor, as a chemical compound that could be combined with a classical therapeutic regimen in order to design more efficient therapeutic strategies in LARC management.
Assuntos
Antineoplásicos , Neoplasias Retais , Humanos , Fluoruracila , Resultado do Tratamento , Multiômica , Proteômica , Quimiorradioterapia , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Neoplasias Retais/patologia , Terapia Neoadjuvante , Fatores de Transcrição de OctâmeroRESUMO
Pancreatic cancer is likely to become one of the leading causes of cancer-related death in many countries within the next decade. Surgery is the potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC), although only 10%-20% of patients have a resectable disease after diagnosis. Despite recent advances in curative surgery the current prognosis ranges from 6% to 10% globally. One of the main issues at the pre-clinical level is the lacking of model which simultaneously reflects the tumour microenvironment (TME) at both structural and cellular levels. Here we describe an innovative tissue engineering approach applied to PDAC starting from decellularized human biopsies in order to generate an organotypic 3D in vitro model. This in vitro 3D system recapitulates the ultrastructural environment of native tissue as demonstrated by histology, immunohistochemistry, immunofluorescence, mechanical analysis, and scanning electron microscopy. Mass spectrometry confirmed a different extracellular matrix (ECM) composition between decellularized healthy pancreas and PDAC by identifying a total of 110 non-redundant differently expressed proteins. Immunofluorescence analyses after 7 days of scaffold recellularization with PANC-1 and AsPC-1 pancreatic cell lines, were performed to assess the biocompatibility of 3D matrices to sustain engraftment, localization and infiltration. Finally, both PANC-1 and AsPC-1 cells cultured in 3D matrices showed a reduced response to treatment with FOLFIRINOX if compared to conventional bi-dimensional culture. Our 3D culture system with patient-derived tissue-specific decellularized ECM better recapitulates the pancreatic cancer microenvironment compared to conventional 2D culture conditions and represents a relevant approach for the study of pancreatic cancer response to chemotherapy agents.
Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Protocolos de Quimioterapia Combinada Antineoplásica , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral , Neoplasias PancreáticasRESUMO
Bidirectional communication between cells and their microenvironment has a key function in normal tissue homeostasis, and in disease initiation, progression and a patient's prognosis, at the very least. The extracellular matrix (ECM), as an element of all tissues and cellular microenvironment, is a frequently overlooked component implicated in the pathogenesis and progression of several diseases. In the inflammatory microenvironment (IME), different alterations resulting from remodeling processes can affect ECM, progressively inducing cancer initiation and the passage toward a tumor microenvironment (TME). Indeed, it has been demonstrated that altered ECM components interact with a variety of surface receptors triggering intracellular signaling that affect cellular pathways in turn. This review aims to support the notion that the ECM and its alterations actively participate in the promotion of chronic inflammation and cancer initiation. In conclusion, some data obtained in cancer research with the employment of decellularized ECM (dECM) models are described. The reported results encourage the application of dECM models to investigate the short circuits contributing to the creation of distinct IME, thus representing a potential tool to avoid the progression toward a malignant lesion.
RESUMO
Esophageal reconstruction through bio-engineered allografts that highly resemble the peculiar properties of the tissue extracellular matrix (ECM) is a prospective strategy to overcome the limitations of current surgical approaches. In this work, human esophagus was decellularized for the first time in the literature by comparing three detergent-enzymatic protocols. After decellularization, residual DNA quantification and histological analyses showed that all protocols efficiently removed cells, DNA (<50 ng/mg of tissue) and muscle fibers, preserving collagen/elastin components. The glycosaminoglycan fraction was maintained (70-98%) in the decellularized versus native tissues, while immunohistochemistry showed unchanged expression of specific ECM markers (collagen IV, laminin). The proteomic signature of acellular esophagi corroborated the retention of structural collagens, basement membrane and matrix-cell interaction proteins. Conversely, decellularization led to the loss of HLA-DR expression, producing non-immunogenic allografts. According to hydroxyproline quantification, matrix collagen was preserved (2-6 µg/mg of tissue) after decellularization, while Second-Harmonic Generation imaging highlighted a decrease in collagen intensity. Based on uniaxial tensile tests, decellularization affected tissue stiffness, but sample integrity/manipulability was still maintained. Finally, the cytotoxicity test revealed that no harmful remnants/contaminants were present on acellular esophageal matrices, suggesting allograft biosafety. Despite the different outcomes showed by the three decellularization methods (regarding, for example, tissue manipulability, DNA removal, and glycosaminoglycans/hydroxyproline contents) the ultimate validation should be provided by future repopulation tests and in vivo orthotopic implant of esophageal scaffolds.
Assuntos
Detergentes , Elastina , Colágeno , DNA/metabolismo , Esôfago/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Hidroxiprolina , Laminina , ProteômicaRESUMO
The development of biomimetic nanoparticles (NPs) has revolutionized the concept of nanomedicine by offering a completely new set of biocompatible materials to formulate innovative drug delivery systems capable of imitating the behavior of cells. Specifically, the use of leukocyte-derived membrane proteins to functionalize nanovesicles (leukosomes) can enable their long circulation and target the inflamed endothelium present in many inflammatory pathologies and tumors, making them a promising and versatile drug delivery system. However, these studies did not elucidate the critical experimental parameters involved in leukosomes formulation. In the present study, we approached the preparation of leukosomes using a design of experiment (DoE) method to better understand the influence of experimental parameters on leukosomes features such as size, size distribution, and protein loading. We also validated this formulation technologically and tested its behavior in in vitro colorectal cancer (CRC) models, including CRC patient-derived tumor organoids (PDOs). We demonstrated leukosomes biocompatibility, endothelium adhesion capability, and tumor target in three-dimensional (3D) settings using CRC cell lines. Overall, our study offers a novel conceptual framework for biomimetic NPs using a DoE strategy and consolidates the high therapeutic potential of leukosomes as a viable drug delivery system for anti-inflammatory and antineoplastic applications.
RESUMO
Recently an enhancement of the sensitivity of colorectal cancer (CRC) cells by 5-fluorouracil (5FU) due to the concurrent treatment with epigallocatechin-3-gallate (EGCG) has been found. In the present paper, to investigate on this aspect, adenocarcinoma cells HT29 were treated with 5FU, EGCG and an equimolar mixture of 5FU and EGCG ([5FU+EGCG]) and cell viability was determined. While 5FU exhibits a clear activity, EGCG alone does not express any activity. However by treating the cells with [5FU+EGCG] a strong effect of EGCG is evidenced: the sensitivity of HT29 cells to 5FU was increased by 12-fold. A simulation of the behavior of [5FU+EGCG] in different compartments of the gastrointestinal digestion model was also performed. 5FU and EGCG solubilized into a mixture of digestive fluids analyzed by mass spectrometry did not lead to signals of 5FU, EGCG and the related complex, while by diluting the solution they become detectable. On the contrary, when 5FU and EGCG are submitted to the step-by-step digestion model procedure, the analysis did not show the presence of 5FU, EGCG and [5FU+EGCG]. This behaviour could be ascribed to the instability of these compounds due to the too severe digestion conditions and/or to the complexity of the matrix which could lead in ESI conditions to the suppression of the signals of the analytes of interest.
Assuntos
Catequina , Fluoruracila , Catequina/análogos & derivados , Catequina/química , Catequina/farmacologia , Sobrevivência Celular , Fluoruracila/farmacologia , Células HT29 , HumanosRESUMO
Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.
RESUMO
Colorectal cancer (CRC) shows highly ineffective therapeutic management. An urgent unmet need is the random assignment to adjuvant chemotherapy of high-risk stage II and stage III CRC patients without any predictive factor of efficacy. In the field of drug discovery, a critical step is the preclinical evaluation of drug cytotoxicity, efficacy, and efficiency. We proposed a patient-derived 3D preclinical model for drug evaluation that could mimic in vitro the patient's disease. Surgically resected CRC tissue and adjacent healthy colon mucosa were decellularized by a detergent-enzymatic treatment. Scaffolds were recellularized with HT29 and HCT116 cells. Qualitative and quantitative characterization of matched recellularized samples were evaluated through histology, immunofluorescences, scanning electron microscopy, and DNA amount quantification. A chemosensitivity test was performed using an increasing concentration of 5-fluorouracil (5FU). In vivo studies were carried out using zebrafish (Danio rerio) animal model. Permeability test and drug absorption were also determined. The decellularization protocol allowed the preservation of the original structure and ultrastructure. Five days after recellularization with HT29 and HCT116 cell lines, the 3D CRC model exhibited reduced sensitivity to 5FU treatments compared with conventional 2D cultures. Calculated the half maximal inhibitory concentration (IC50) for HT29 treated with 5FU resulted in 11.5 µM in 3D and 1.3 µM in 2D, and for HCT116, 9.87 µM in 3D and 1.7 µM in 2D. In xenograft experiments, HT29 extravasation was detected after 4 days post-injection, and we obtained a 5FU IC50 fully comparable to that observed in the 3D CRC model. Using confocal microscopy, we demonstrated that the drug diffused through the repopulated 3D CRC scaffolds and co-localized with the cell nuclei. The bioengineered CRC 3D model could be a reliable preclinical patient-specific platform to bridge the gap between in vitro and in vivo drug testing assays and provide effective cancer treatment.