Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Opin Neurobiol ; 86: 102858, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38547564

RESUMO

Advances in autism spectrum disorder (ASD) genetics have identified many genetic causes, reflecting remarkable progress while at the same time identifying challenges such as heterogeneity and pleiotropy, which complicate attempts to connect genetic risk to mechanisms. High-throughput functional genomic approaches have yielded progress by defining a molecular pathology in the brain of individuals with ASD and in identifying convergent biological pathways through which risk genes are predicted to act. These studies indicate that ASD genetic risk converges in early brain development, primarily during the period of cortical neurogenesis. Over development, genetic perturbations in turn lead to broad neuronal signaling dysregulation, most prominent in glutamatergic cortical-cortical projecting neurons and somatostatin positive interneurons, which is accompanied by glial dyshomeostasis throughout the cerebral cortex. Connecting these developmental perturbations to disrupted neuronal and glial function in the postnatal brain is an important direction in current research. Coupling functional genomic approaches with advances in induced pluripotent stem cell-derived neural organoid development provides a promising avenue for connecting brain pathology to developmental mechanisms.

2.
Proc Natl Acad Sci U S A ; 120(31): e2215632120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37506195

RESUMO

Autism spectrum disorder (ASD) has a complex genetic architecture involving contributions from both de novo and inherited variation. Few studies have been designed to address the role of rare inherited variation or its interaction with common polygenic risk in ASD. Here, we performed whole-genome sequencing of the largest cohort of multiplex families to date, consisting of 4,551 individuals in 1,004 families having two or more autistic children. Using this study design, we identify seven previously unrecognized ASD risk genes supported by a majority of rare inherited variants, finding support for a total of 74 genes in our cohort and a total of 152 genes after combined analysis with other studies. Autistic children from multiplex families demonstrate an increased burden of rare inherited protein-truncating variants in known ASD risk genes. We also find that ASD polygenic score (PGS) is overtransmitted from nonautistic parents to autistic children who also harbor rare inherited variants, consistent with combinatorial effects in the offspring, which may explain the reduced penetrance of these rare variants in parents. We also observe that in addition to social dysfunction, language delay is associated with ASD PGS overtransmission. These results are consistent with an additive complex genetic risk architecture of ASD involving rare and common variation and further suggest that language delay is a core biological feature of ASD.


Assuntos
Transtorno do Espectro Autista , Transtornos do Desenvolvimento da Linguagem , Criança , Humanos , Transtorno do Espectro Autista/genética , Herança Multifatorial/genética , Pais , Sequenciamento Completo do Genoma , Predisposição Genética para Doença
3.
Cell Genom ; 3(3): 100279, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36950377

RESUMO

How rare protein-disrupting risk variants implicated in autism spectrum disorders (ASDs) interact or functionally converge is unknown. Pintacuda et al.1 perform proteomics in induced human neurons and identify more than 1,000 interactions, 90% of which were not previously reported, emphasizing the importance of cell-type- and isoform-specific protein interactions in ASD.

4.
Nat Commun ; 12(1): 7243, 2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903713

RESUMO

Regulatory mechanisms associated with repeat-rich sequences and chromosomal conformations in mature neurons remain unexplored. Here, we map cell-type specific chromatin domain organization in adult mouse cerebral cortex and report strong enrichment of Endogenous Retrovirus 2 (ERV2) repeat sequences in the neuron-specific heterochromatic B2NeuN+ megabase-scaling subcompartment. Single molecule long-read sequencing and comparative Hi-C chromosomal contact mapping in wild-derived SPRET/EiJ (Mus spretus) and laboratory inbred C57BL/6J (Mus musculus) reveal neuronal reconfigurations tracking recent ERV2 expansions in the murine germline, with significantly higher B2NeuN+ contact frequencies at sites with ongoing insertions in Mus musculus. Neuronal ablation of the retrotransposon silencer Kmt1e/Setdb1 triggers B2NeuN+ disintegration and rewiring with open chromatin domains enriched for cellular stress response genes, along with severe neuroinflammation and proviral assembly with infiltration of dendrites . We conclude that neuronal megabase-scale chromosomal architectures include an evolutionarily adaptive heterochromatic organization which, upon perturbation, results in transcriptional dysregulation and unleashes ERV2 proviruses with strong neuronal tropism.


Assuntos
Cromossomos/metabolismo , Neurônios/metabolismo , Retroelementos/genética , Animais , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Cromossomos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Retrovirus Endógenos/genética , Evolução Molecular , Amplificação de Genes , Inativação Gênica , Genes de Partícula A Intracisternal/genética , Genoma Viral/genética , Gliose/genética , Gliose/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Microglia/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/virologia , Provírus/genética , Vírion/genética , Vírion/metabolismo
5.
Front Neural Circuits ; 15: 676308, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054438

RESUMO

Social dominance hierarchies are a common adaptation to group living and exist across a broad range of the animal kingdom. Social dominance is known to rely on the prefrontal cortex (PFC), a brain region that shows a protracted developmental trajectory in mice. However, it is unknown to what extent the social dominance hierarchy is plastic across postnatal development and how it is regulated. Here we identified a sensitive period for experience-dependent social dominance plasticity in adolescent male mice, which is regulated by mechanisms that affect cortical plasticity. We show that social dominance hierarchies in male mice are already formed at weaning and are highly stable into adulthood. However, one experience of forced losing significantly reduces social dominance during the adolescent period but not in adulthood, suggesting adolescence as a sensitive period for experience-dependent social dominance plasticity. Notably, robust adolescent plasticity can be prolonged into adulthood by genetic deletion of Lynx1, a molecular brake that normally limits cortical plasticity through modulation of cortical nicotinic signaling. This plasticity is associated with increased activation of established nodes of the social dominance network including dorsal medial PFC and medial dorsal thalamus evidenced by increased c-Fos. Pharmacologically mediated elevation of cortical plasticity by valproic acid rapidly destabilizes the hierarchy of adult wildtype animals. These findings provide insight into mechanisms through which increased behavioral plasticity may be achieved to improve therapeutic recovery from psychiatric disorders that are associated with social deficits.


Assuntos
Plasticidade Neuronal , Predomínio Social , Animais , Encéfalo , Masculino , Camundongos , Córtex Pré-Frontal
6.
Nat Neurosci ; 23(10): 1240-1252, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32868932

RESUMO

Juvenile social isolation reduces sociability in adulthood, but the underlying neural circuit mechanisms are poorly understood. We found that, in male mice, 2 weeks of social isolation immediately following weaning leads to a failure to activate medial prefrontal cortex neurons projecting to the posterior paraventricular thalamus (mPFC→pPVT) during social exposure in adulthood. Chemogenetic or optogenetic suppression of mPFC→pPVT activity in adulthood was sufficient to induce sociability deficits without affecting anxiety-related behaviors or preference toward rewarding food. Juvenile isolation led to both reduced excitability of mPFC→pPVT neurons and increased inhibitory input drive from low-threshold-spiking somatostatin interneurons in adulthood, suggesting a circuit mechanism underlying sociability deficits. Chemogenetic or optogenetic stimulation of mPFC→pPVT neurons in adulthood could rescue the sociability deficits caused by juvenile isolation. Our study identifies a pair of specific medial prefrontal cortex excitatory and inhibitory neuron populations required for sociability that are profoundly affected by juvenile social experience.


Assuntos
Núcleos da Linha Média do Tálamo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Social , Animais , Comportamento Animal , Interneurônios/fisiologia , Masculino , Vias Neurais/fisiologia , Optogenética , Isolamento Social
7.
Nat Commun ; 11(1): 1003, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-32081848

RESUMO

Social isolation during the juvenile critical window is detrimental to proper functioning of the prefrontal cortex (PFC) and establishment of appropriate adult social behaviors. However, the specific circuits that undergo social experience-dependent maturation to regulate social behavior are poorly understood. We identify a specific activation pattern of parvalbumin-positive interneurons (PVIs) in dorsal-medial PFC (dmPFC) prior to an active bout, or a bout initiated by the focal mouse, but not during a passive bout when mice are explored by a stimulus mouse. Optogenetic and chemogenetic manipulation reveals that brief dmPFC-PVI activation triggers an active social approach to promote sociability. Juvenile social isolation decouples dmPFC-PVI activation from subsequent active social approach by freezing the functional maturation process of dmPFC-PVIs during the juvenile-to-adult transition. Chemogenetic activation of dmPFC-PVI activity in the adult animal mitigates juvenile isolation-induced social deficits. Therefore, social experience-dependent maturation of dmPFC-PVI is linked to long-term impacts on social behavior.


Assuntos
Parvalbuminas/fisiologia , Córtex Pré-Frontal/fisiologia , Comportamento Social , Animais , Interneurônios/fisiologia , Relações Interpessoais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Neurológicos , Modelos Psicológicos , Optogenética , Parvalbuminas/genética , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Isolamento Social
8.
Proc Natl Acad Sci U S A ; 115(5): 1111-1116, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339486

RESUMO

Behavioral coping strategies are critical for active resilience to stress and depression; here we describe a role for neuroligin-2 (NLGN-2) in the nucleus accumbens (NAc). Neuroligins (NLGN) are a family of neuronal postsynaptic cell adhesion proteins that are constituents of the excitatory and inhibitory synapse. Importantly, NLGN-3 and NLGN-4 mutations are strongly implicated as candidates underlying the development of neuropsychiatric disorders with social disturbances such as autism, but the role of NLGN-2 in neuropsychiatric disease states is unclear. Here we show a reduction in NLGN-2 gene expression in the NAc of patients with major depressive disorder. Chronic social defeat stress in mice also decreases NLGN-2 selectively in dopamine D1-positive cells, but not dopamine D2-positive cells, within the NAc of stress-susceptible mice. Functional NLGN-2 knockdown produces bidirectional, cell-type-specific effects: knockdown in dopamine D1-positive cells promotes subordination and stress susceptibility, whereas knockdown in dopamine D2-positive cells mediates active defensive behavior. These findings establish a behavioral role for NAc NLGN-2 in stress and depression; provide a basis for targeted, cell-type specific therapy; and highlight the role of active behavioral coping mechanisms in stress susceptibility.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Dominação-Subordinação , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Estresse Psicológico/fisiopatologia , Agressão , Animais , Antidepressivos/farmacologia , Comportamento Animal , Linhagem Celular , Modelos Animais de Doenças , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Comportamento Social , Sinapses/metabolismo
9.
Am J Med Genet B Neuropsychiatr Genet ; 174(6): 631-640, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28699694

RESUMO

Large-scale consortia including the Psychiatric Genomics Consortium, the Common Minds Consortium, BrainSeq and PsychENCODE, and many other studies taken together provide increasingly detailed insights into the genetic and epigenetic risk architectures of schizophrenia (SCZ) and offer vast amounts of molecular information, but with largely unexplored therapeutic potential. Here we discuss how epigenomic studies in human brain could guide animal work to test the impact of disease-associated alterations in chromatin structure and function on cognition and behavior. For example, transcription factors such as MYOCYTE-SPECIFIC ENHANCER FACTOR 2C (MEF2C), or multiple regulators of the open chromatin mark, methyl-histone H3-lysine 4, are associated with the genetic risk architectures of common psychiatric disease and alterations in chromatin structure and function in diseased brain tissue. Importantly, these molecules also affect cognition and behavior in genetically engineered mice, including virus-mediated expression changes in prefrontal cortex (PFC) and other key nodes in the circuitry underlying psychosis. Therefore, preclinical and small laboratory animal work could target genomic sequences affected by chromatin alterations in SCZ. To this end, in vivo editing of enhancer and other regulatory non-coding DNA by RNA-guided nucleases including CRISPR-Cas, and designer transcription factors, could be expected to deliver pipelines for novel therapeutic approaches aimed at improving cognitive dysfunction and other core symptoms of SCZ.


Assuntos
Epigenômica , Esquizofrenia/genética , Animais , Camundongos
10.
Nat Commun ; 7: 12743, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27597321

RESUMO

Neuronal epigenomes, including chromosomal loopings moving distal cis-regulatory elements into proximity of target genes, could serve as molecular proxy linking present-day-behaviour to past exposures. However, longitudinal assessment of chromatin state is challenging, because conventional chromosome conformation capture assays essentially provide single snapshots at a given time point, thus reflecting genome organization at the time of brain harvest and therefore are non-informative about the past. Here we introduce 'NeuroDam' to assess epigenome status retrospectively. Short-term expression of the bacterial DNA adenine methyltransferase Dam, tethered to the Gad1 gene promoter in mouse prefrontal cortex neurons, results in stable G(methyl)ATC tags at Gad1-bound chromosomal contacts. We show by NeuroDam that mice with defective cognition 4 months after pharmacological NMDA receptor blockade already were affected by disrupted chromosomal conformations shortly after drug exposure. Retrospective profiling of neuronal epigenomes is likely to illuminate epigenetic determinants of normal and diseased brain development in longitudinal context.


Assuntos
Genoma , Neurônios/metabolismo , Córtex Pré-Frontal/citologia , Animais , Aberrações Cromossômicas , Cognição , Maleato de Dizocilpina/farmacologia , Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Estudos Longitudinais , Memória , Camundongos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , DNA Metiltransferases Sítio Específica (Adenina-Específica) , Coloração e Rotulagem
11.
Front Psychol ; 6: 1805, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635701

RESUMO

Social cognition is a complex process that requires the integration of a wide variety of behaviors, including salience, reward-seeking, motivation, knowledge of self and others, and flexibly adjusting behavior in social groups. Not surprisingly, social cognition represents a sensitive domain commonly disrupted in the pathology of a variety of psychiatric disorders including Autism Spectrum Disorder (ASD) and Schizophrenia (SCZ). Here, we discuss convergent research from animal models to human disease that implicates the prefrontal cortex (PFC) as a key regulator in social cognition, suggesting that disruptions in prefrontal microcircuitry play an essential role in the pathophysiology of psychiatric disorders with shared social deficits. We take a translational perspective of social cognition, and review three key behaviors that are essential to normal social processing in rodents and humans, including social motivation, social recognition, and dominance hierarchy. A shared prefrontal circuitry may underlie these behaviors. Social cognition deficits in animal models of neurodevelopmental disorders like ASD and SCZ have been linked to an altered balance of excitation and inhibition (E/I ratio) within the cortex generally, and PFC specifically. A clear picture of the mechanisms by which altered E/I ratio in the PFC might lead to disruptions of social cognition across a variety of behaviors is not well understood. Future studies should explore how disrupted developmental trajectory of prefrontal microcircuitry could lead to altered E/I balance and subsequent deficits in the social domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA