Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Eur Acad Dermatol Venereol ; 36 Suppl 5: 21-29, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35315152

RESUMO

BACKGROUND: We have developed innovative base formulations that were designed to mimic the skin with respect to its components and galenic structure. Components include water, proteins, lipids, sugars and minerals. OBJECTIVES: We characterized formulations and their skin penetration using in vitro methods and evaluated their impact on skin hydration in a clinical trial. METHODS: Scanning electron microscopy (SEM) imaging and X-ray diffraction were used to analyse formulations as well as formulation impact on the stratum corneum (SC) structure. Mass spectrometry imaging (MSI) was used to compare formulation ingredients with SC components and to detect their distribution in the skin. Clinical studies were performed to confirm effects on skin hydration and investigate potential adverse skin effects (irritation and sensitization). RESULTS: SEM and X-ray diffraction of the formulations showed that lipids were organized in sheets similar to SC lipids. MSI demonstrated similarities between formulation components and skin constituents, as well as a good penetration into the skin. The formulations did not modify the lamellar organization of the SC lipids, but they increased the relative proportion of the crystallized lipids and some of the amorphous lipids. In in vivo studies, a high level of hydration was maintained over 24 h after application with an intense and 'very good hydration'. Both formulations were shown to be non-(photo)sensitizers with excellent tolerance. Sensorial evaluation indicated the formulations were not oily or sticky and maintained the skin's suppleness over time. Formulations had a 'nude skin' touch and created a natural protective film. CONCLUSIONS: The two formulations were well-tolerated and increased skin hydration in clinical subjects, an effect that could contribute to the alleviation of sensitive skin. The formulations were shown to resemble the lipid organization of the stratum corneum, as well as penetrate the skin without disrupting the lipid lamella organization.


Assuntos
Epiderme , Pele , Humanos , Técnicas In Vitro , Óleos/análise , Óleos/metabolismo , Pele/diagnóstico por imagem , Pele/metabolismo , Água/metabolismo
2.
Sci Adv ; 5(9): eaav9394, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31535019

RESUMO

The collective self-organization of cells into three-dimensional structures can give rise to emergent physical properties such as fluid behavior. Here, we demonstrate that tissues growing on curved surfaces develop shapes with outer boundaries of constant mean curvature, similar to the energy minimizing forms of liquids wetting a surface. The amount of tissue formed depends on the shape of the substrate, with more tissue being deposited on highly concave surfaces, indicating a mechano-biological feedback mechanism. Inhibiting cell-contractility further revealed that active cellular forces are essential for generating sufficient surface stresses for the liquid-like behavior and growth of the tissue. This suggests that the mechanical signaling between cells and their physical environment, along with the continuous reorganization of cells and matrix is a key principle for the emergence of tissue shape.


Assuntos
Proliferação de Células , Forma Celular , Osteoblastos/citologia , Engenharia Tecidual , Animais , Técnicas de Cultura de Células , Células Cultivadas , Cinética , Camundongos , Modelos Biológicos , Tensão Superficial
3.
Acta Biomater ; 9(3): 5531-43, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23099300

RESUMO

In a previous paper we presented a theoretical framework to describe tissue growth in confined geometries based on the work of Ambrosi and Guillou [Ambrosi D, Guillou A. Growth and dissipation in biological tissues. Cont Mech Thermodyn 2007;19:245-51]. A thermodynamically consistent eigenstrain rate for growth was derived using the concept of configurational forces and used to investigate growth in holes of cylindrical geometries. Tissue growing from concave surfaces can be described by a model based on this theory. However, an apparently asymmetric behaviour between growth from convex and concave surfaces has been observed experimentally, but is not predicted by this model. This contradiction is likely to be due to the presence of contractile tensile stresses produced by cells near the tissue surface. In this contribution we extend the model in order to couple tissue growth to the presence of a surface stress. This refined growth model is solved for two geometries, within a cylindrical hole and on the outer surface of a cylinder, thus demonstrating how surface stress may indeed inhibit growth on convex substrates.


Assuntos
Modelos Biológicos , Especificidade de Órgãos , Estresse Mecânico , Fenômenos Biomecânicos , Cinética , Análise Numérica Assistida por Computador , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA